Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 1;351(Pt 1):161–166. doi: 10.1042/0264-6021:3510161

The intermediates of aggrecanase-dependent cleavage of aggrecan in rat chondrosarcoma cells treated with interleukin-1.

J D Sandy 1, V Thompson 1, K Doege 1, C Verscharen 1
PMCID: PMC1221346  PMID: 10998358

Abstract

We have examined the abundance and structure of intermediates in the chondrocyte-mediated degradation of aggrecan by aggrecanase(s). Degradation products were identified by Western-blot analysis with antibodies to cleavage-site neoepitopes and to peptides within the globular domains. Rat chondrosarcoma tumour contained full-length aggrecan and all of the individual peptides expected from single independent cleavages at each of the four aggrecanase sites in the chondroitin sulphate (CS) domain. Kinetic analysis of the products present in rat chondrosarcoma cell cultures treated with interleukin-1b showed that the first aggrecanase-mediated cleavages occurred at the four sites within the CS attachment region to generate two stable intermediates, Val(1)-Glu(1459) and Val(1)-Glu(1274). These species were subsequently cleaved at the Glu(373) site in the interglobular domain to form the terminal products, Val(1)-Glu(373), Ala(374)-Glu(1274) and Ala(374)-Glu(1459). It therefore appears that the aggrecanase-mediated processing of native aggrecan by chondrocytes in situ is initiated within the CS-attachment region and completed by cleavage within the interglobular domain. Since it has been shown that digestion of aggrecan monomer in solution with recombinant ADAMTS-4 [Tortorella, Pratta, Liu, Austin, Ross, Abbaszade, Burn and Arner (2000) Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J. Biol. Chem. 275, 18566-18573] exhibits similar kinetics, it appears that preferential proteinase cleavage in the CS-rich region is determined by properties inherent in the aggrecan monomer itself, such as preferred peptide sequences for enzyme binding or enhanced accessibility to the core protein at these sites.

Full Text

The Full Text of this article is available as a PDF (163.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbaszade I., Liu R. Q., Yang F., Rosenfeld S. A., Ross O. H., Link J. R., Ellis D. M., Tortorella M. D., Pratta M. A., Hollis J. M. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem. 1999 Aug 13;274(33):23443–23450. doi: 10.1074/jbc.274.33.23443. [DOI] [PubMed] [Google Scholar]
  2. Buckwalter J. A., Rosenberg L. C. Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. J Biol Chem. 1982 Aug 25;257(16):9830–9839. [PubMed] [Google Scholar]
  3. Caputo C. B., MacCallum D. K., Kimura J. H., Schrode J., Hascall V. C. Characterization of fragments produced by clostripain digestion of proteoglycans from the Swarm rat chondrosarcoma. Arch Biochem Biophys. 1980 Oct 1;204(1):220–233. doi: 10.1016/0003-9861(80)90027-2. [DOI] [PubMed] [Google Scholar]
  4. Dudhia J., Davidson C. M., Wells T. M., Vynios D. H., Hardingham T. E., Bayliss M. T. Age-related changes in the content of the C-terminal region of aggrecan in human articular cartilage. Biochem J. 1996 Feb 1;313(Pt 3):933–940. doi: 10.1042/bj3130933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flannery C., Stanescu V., Mörgelin M., Boynton R., Gordy J., Sandy J. Variability in the G3 domain content of bovine aggrecan from cartilage extracts and chondrocyte cultures. Arch Biochem Biophys. 1992 Aug 15;297(1):52–60. doi: 10.1016/0003-9861(92)90640-i. [DOI] [PubMed] [Google Scholar]
  6. Fosang A. J., Hardingham T. E. Isolation of the N-terminal globular protein domains from cartilage proteoglycans. Identification of G2 domain and its lack of interaction with hyaluronate and link protein. Biochem J. 1989 Aug 1;261(3):801–809. doi: 10.1042/bj2610801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galloway W. A., Murphy G., Sandy J. D., Gavrilovic J., Cawston T. E., Reynolds J. J. Purification and characterization of a rabbit bone metalloproteinase that degrades proteoglycan and other connective-tissue components. Biochem J. 1983 Mar 1;209(3):741–752. doi: 10.1042/bj2090741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ilic M. Z., Handley C. J., Robinson H. C., Mok M. T. Mechanism of catabolism of aggrecan by articular cartilage. Arch Biochem Biophys. 1992 Apr;294(1):115–122. doi: 10.1016/0003-9861(92)90144-l. [DOI] [PubMed] [Google Scholar]
  9. Ilic M. Z., Robinson H. C., Handley C. J. Characterization of aggrecan retained and lost from the extracellular matrix of articular cartilage. Involvement of carboxyl-terminal processing in the catabolism of aggrecan. J Biol Chem. 1998 Jul 10;273(28):17451–17458. doi: 10.1074/jbc.273.28.17451. [DOI] [PubMed] [Google Scholar]
  10. Lark M. W., Gordy J. T., Weidner J. R., Ayala J., Kimura J. H., Williams H. R., Mumford R. A., Flannery C. R., Carlson S. S., Iwata M. Cell-mediated catabolism of aggrecan. Evidence that cleavage at the "aggrecanase" site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J Biol Chem. 1995 Feb 10;270(6):2550–2556. doi: 10.1074/jbc.270.6.2550. [DOI] [PubMed] [Google Scholar]
  11. Loulakis P., Shrikhande A., Davis G., Maniglia C. A. N-terminal sequence of proteoglycan fragments isolated from medium of interleukin-1-treated articular-cartilage cultures. Putative site(s) of enzymic cleavage. Biochem J. 1992 Jun 1;284(Pt 2):589–593. doi: 10.1042/bj2840589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Patwari P., Kurz B., Sandy J. D., Grodzinsky A. J. Mannosamine inhibits aggrecanase-mediated changes in the physical properties and biochemical composition of articular cartilage. Arch Biochem Biophys. 2000 Feb 1;374(1):79–85. doi: 10.1006/abbi.1999.1538. [DOI] [PubMed] [Google Scholar]
  13. Sandy J. D., Flannery C. R., Neame P. J., Lohmander L. S. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest. 1992 May;89(5):1512–1516. doi: 10.1172/JCI115742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sandy J. D., Gamett D., Thompson V., Verscharen C. Chondrocyte-mediated catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or retinoic acid can be inhibited by glucosamine. Biochem J. 1998 Oct 1;335(Pt 1):59–66. doi: 10.1042/bj3350059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sandy J. D., Neame P. J., Boynton R. E., Flannery C. R. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem. 1991 May 15;266(14):8683–8685. [PubMed] [Google Scholar]
  16. Sandy J. D., Plaas A. H., Koob T. J. Pathways of aggrecan processing in joint tissues. Implications for disease mechanism and monitoring. Acta Orthop Scand Suppl. 1995 Oct;266:26–32. [PubMed] [Google Scholar]
  17. Sandy J. D., Thompson V., Verscharen C., Gamett D. Chondrocyte-mediated catabolism of aggrecan: evidence for a glycosylphosphatidylinositol-linked protein in the aggrecanase response to interleukin-1 or retinoic acid. Arch Biochem Biophys. 1999 Jul 15;367(2):258–264. doi: 10.1006/abbi.1999.1234. [DOI] [PubMed] [Google Scholar]
  18. Tortorella M. D., Burn T. C., Pratta M. A., Abbaszade I., Hollis J. M., Liu R., Rosenfeld S. A., Copeland R. A., Decicco C. P., Wynn R. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science. 1999 Jun 4;284(5420):1664–1666. doi: 10.1126/science.284.5420.1664. [DOI] [PubMed] [Google Scholar]
  19. Tortorella M. D., Pratta M., Liu R. Q., Austin J., Ross O. H., Abbaszade I., Burn T., Arner E. Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem. 2000 Jun 16;275(24):18566–18573. doi: 10.1074/jbc.M909383199. [DOI] [PubMed] [Google Scholar]
  20. Vilim V., Fosang A. J. Proteoglycans isolated from dissociative extracts of differently aged human articular cartilage: characterization of naturally occurring hyaluronan-binding fragments of aggrecan. Biochem J. 1994 Dec 15;304(Pt 3):887–894. doi: 10.1042/bj3040887. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES