Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 1;351(Pt 1):195–205. doi: 10.1042/0264-6021:3510195

Phospholamban remains associated with the Ca2+- and Mg2+-dependent ATPase following phosphorylation by cAMP-dependent protein kinase.

S Negash 1, Q Yao 1, H Sun 1, J Li 1, D J Bigelow 1, T C Squier 1
PMCID: PMC1221350  PMID: 10998362

Abstract

We have used fluorescence and spin-label EPR spectroscopy to investigate how the phosphorylation of phospholamban (PLB) by cAMP-dependent protein kinase (PKA) modifies structural interactions between PLB and the Ca(2+)- and Mg(2+)-dependent ATPase (Ca-ATPase) that result in enzyme activation. Following covalent modification of N-terminal residues of PLB with dansyl chloride or the spin label 4-isothiocyanato-2,2,6,6-tetramethylpiperidine-N-oxyl ('ITC-TEMPO'), we have co-reconstituted PLB with affinity-purified Ca-ATPase isolated from skeletal sarcoplasmic reticulum (SR) with full retention of catalytic function. The Ca(2+)-dependence of the ATPase activity of this reconstituted preparation is virtually identical with that observed using native cardiac SR before and after PLB phosphorylation, indicating that co-reconstituted sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase 1 (SERCA1) and PLB provide an equivalent experimental model for SERCA2a-PLB interactions. Phosphorylation of PLB in the absence of the Ca-ATPase results in a greater amplitude of rotational mobility, suggesting that the structural linkage between the transmembrane region and the N-terminus is destabilized. However, whereas co-reconstitution with the Ca-ATPase restricts the amplitude of rotational motion of PLB, subsequent phosphorylation of PLB does not significantly alter its rotational dynamics. Thus structural interactions between PLB and the Ca-ATPase that restrict the rotational mobility of the N-terminus of PLB are retained following the phosphorylation of PLB by PKA. On the other hand, the fluorescence intensity decay of bound dansyl is sensitive to the phosphorylation state of PLB, indicating that there are changes in the tertiary structure of PLB coincident with enzyme activation. These results suggest that PLB phosphorylation alters its structural interactions with the Ca-ATPase by inducing structural rearrangements between PLB and the Ca-ATPase within a defined complex that modulates Ca(2+)-transport function.

Full Text

The Full Text of this article is available as a PDF (210.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkin I. T., Adams P. D., Brünger A. T., Smith S. O., Engelman D. M. Structural perspectives of phospholamban, a helical transmembrane pentamer. Annu Rev Biophys Biomol Struct. 1997;26:157–179. doi: 10.1146/annurev.biophys.26.1.157. [DOI] [PubMed] [Google Scholar]
  2. Arkin I. T., Rothman M., Ludlam C. F., Aimoto S., Engelman D. M., Rothschild K. J., Smith S. O. Structural model of the phospholamban ion channel complex in phospholipid membranes. J Mol Biol. 1995 May 12;248(4):824–834. doi: 10.1006/jmbi.1995.0263. [DOI] [PubMed] [Google Scholar]
  3. Asahi M., Kimura Y., Kurzydlowski K., Tada M., MacLennan D. H. Transmembrane helix M6 in sarco(endo)plasmic reticulum Ca(2+)-ATPase forms a functional interaction site with phospholamban. Evidence for physical interactions at other sites. J Biol Chem. 1999 Nov 12;274(46):32855–32862. doi: 10.1074/jbc.274.46.32855. [DOI] [PubMed] [Google Scholar]
  4. Asahi M., McKenna E., Kurzydlowski K., Tada M., MacLennan D. H. Physical interactions between phospholamban and sarco(endo)plasmic reticulum Ca2+-ATPases are dissociated by elevated Ca2+, but not by phospholamban phosphorylation, vanadate, or thapsigargin, and are enhanced by ATP. J Biol Chem. 2000 May 19;275(20):15034–15038. doi: 10.1074/jbc.275.20.15034. [DOI] [PubMed] [Google Scholar]
  5. Autry J. M., Jones L. R. Functional Co-expression of the canine cardiac Ca2+ pump and phospholamban in Spodoptera frugiperda (Sf21) cells reveals new insights on ATPase regulation. J Biol Chem. 1997 Jun 20;272(25):15872–15880. doi: 10.1074/jbc.272.25.15872. [DOI] [PubMed] [Google Scholar]
  6. Blackman S. M., Piston D. W., Beth A. H. Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer. Biophys J. 1998 Aug;75(2):1117–1130. doi: 10.1016/S0006-3495(98)77601-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cantilina T., Sagara Y., Inesi G., Jones L. R. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+. J Biol Chem. 1993 Aug 15;268(23):17018–17025. [PubMed] [Google Scholar]
  8. Chen L., Yao Q., Brungardt K., Squier T., Bigelow D. Changes in spatial arrangement between individual Ca-ATPase polypeptide chains in response to phospholamban phosphorylation. Ann N Y Acad Sci. 1998 Sep 16;853:264–266. doi: 10.1111/j.1749-6632.1998.tb08275.x. [DOI] [PubMed] [Google Scholar]
  9. Coll R. J., Murphy A. J. Purification of the CaATPase of sarcoplasmic reticulum by affinity chromatography. J Biol Chem. 1984 Nov 25;259(22):14249–14254. [PubMed] [Google Scholar]
  10. Cornea R. L., Jones L. R., Autry J. M., Thomas D. D. Mutation and phosphorylation change the oligomeric structure of phospholamban in lipid bilayers. Biochemistry. 1997 Mar 11;36(10):2960–2967. doi: 10.1021/bi961955q. [DOI] [PubMed] [Google Scholar]
  11. Fambrough D. M., Bayne E. K. Multiple forms of (Na+ + K+)-ATPase in the chicken. Selective detection of the major nerve, skeletal muscle, and kidney form by a monoclonal antibody. J Biol Chem. 1983 Mar 25;258(6):3926–3935. [PubMed] [Google Scholar]
  12. Fernandez J. L., Rosemblatt M., Hidalgo C. Highly purified sarcoplasmic reticulum vesicles are devoid of Ca2+-independent ('basal') ATPase activity. Biochim Biophys Acta. 1980 Jul;599(2):552–568. doi: 10.1016/0005-2736(80)90199-6. [DOI] [PubMed] [Google Scholar]
  13. Hidalgo C., Ikemoto N., Gergely J. Role of phospholipids in the calcium-dependent ATPase of the sarcoplasmic reticulum. Enzymatic and ESR studies with phospholipid-replaced membranes. J Biol Chem. 1976 Jul 25;251(14):4224–4232. [PubMed] [Google Scholar]
  14. Huggins J. P., England P. J. Evidence for a phosphorylation-induced conformational change in phospholamban from the effects of three proteases. FEBS Lett. 1987 Jun 8;217(1):32–36. doi: 10.1016/0014-5793(87)81236-x. [DOI] [PubMed] [Google Scholar]
  15. Hunter G. W., Squier T. C. Phospholipid acyl chain rotational dynamics are independent of headgroup structure in unilamellar vesicles containing binary mixtures of dioleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine. Biochim Biophys Acta. 1998 Dec 9;1415(1):63–76. doi: 10.1016/s0005-2736(98)00178-3. [DOI] [PubMed] [Google Scholar]
  16. James P., Inui M., Tada M., Chiesi M., Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989 Nov 2;342(6245):90–92. doi: 10.1038/342090a0. [DOI] [PubMed] [Google Scholar]
  17. Ji Y., Loukianov E., Loukianova T., Jones L. R., Periasamy M. SERCA1a can functionally substitute for SERCA2a in the heart. Am J Physiol. 1999 Jan;276(1 Pt 2):H89–H97. doi: 10.1152/ajpheart.1999.276.1.H89. [DOI] [PubMed] [Google Scholar]
  18. Jones L. R., Wegener A. D., Simmerman H. K. Purification of phospholamban from canine cardiac sarcoplasmic reticulum vesicles by use of sulfhydryl group affinity chromatography. Methods Enzymol. 1988;157:360–369. doi: 10.1016/0076-6879(88)57091-x. [DOI] [PubMed] [Google Scholar]
  19. Kimura Y., Inui M., Kadoma M., Kijima Y., Sasaki T., Tada M. Effects of monoclonal antibody against phospholamban on calcium pump ATPase of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol. 1991 Nov;23(11):1223–1230. doi: 10.1016/0022-2828(91)90080-6. [DOI] [PubMed] [Google Scholar]
  20. Kimura Y., Kurzydlowski K., Tada M., MacLennan D. H. Phospholamban inhibitory function is activated by depolymerization. J Biol Chem. 1997 Jun 13;272(24):15061–15064. doi: 10.1074/jbc.272.24.15061. [DOI] [PubMed] [Google Scholar]
  21. Kimura Y., Kurzydlowski K., Tada M., MacLennan D. H. Phospholamban regulates the Ca2+-ATPase through intramembrane interactions. J Biol Chem. 1996 Sep 6;271(36):21726–21731. doi: 10.1074/jbc.271.36.21726. [DOI] [PubMed] [Google Scholar]
  22. Kranias E. G. Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem. 1985 Sep 15;260(20):11006–11010. [PubMed] [Google Scholar]
  23. Kranias E. G., Solaro R. J. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature. 1982 Jul 8;298(5870):182–184. doi: 10.1038/298182a0. [DOI] [PubMed] [Google Scholar]
  24. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  25. Levine B. A., Patchell V. B., Sharma P., Gao Y., Bigelow D. J., Yao Q., Goh S., Colyer J., Drago G. A., Perry S. V. Sites on the cytoplasmic region of phospholamban involved in interaction with the calcium-activated ATPase of the sarcoplasmic reticulum. Eur J Biochem. 1999 Sep;264(3):905–913. doi: 10.1046/j.1432-1327.1999.00688.x. [DOI] [PubMed] [Google Scholar]
  26. Li M., Cornea R. L., Autry J. M., Jones L. R., Thomas D. D. Phosphorylation-induced structural change in phospholamban and its mutants, detected by intrinsic fluorescence. Biochemistry. 1998 May 26;37(21):7869–7877. doi: 10.1021/bi9801053. [DOI] [PubMed] [Google Scholar]
  27. Lindemann J. P., Jones L. R., Hathaway D. R., Henry B. G., Watanabe A. M. beta-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem. 1983 Jan 10;258(1):464–471. [PubMed] [Google Scholar]
  28. Luedtke R., Owen C. S., Vanderkooi J. M., Karush F. Proximity relationships within the Fc segment of rabbit immunoglobulin G analyzed by resonance energy transfer. Biochemistry. 1981 May 12;20(10):2927–2936. doi: 10.1021/bi00513a033. [DOI] [PubMed] [Google Scholar]
  29. MacLennan D. H., Kimura Y., Toyofuku T. Sites of regulatory interaction between calcium ATPases and phospholamban. Ann N Y Acad Sci. 1998 Sep 16;853:31–42. doi: 10.1111/j.1749-6632.1998.tb08254.x. [DOI] [PubMed] [Google Scholar]
  30. MacLennan D. H., Toyofuku T., Kimura Y. Sites of regulatory interaction between calcium ATPases and phospholamban. Basic Res Cardiol. 1997;92 (Suppl 1):11–15. doi: 10.1007/BF00794063. [DOI] [PubMed] [Google Scholar]
  31. Maslennikov I. V., Sobol A. G., Anagli J., James P., Vorherr T., Arseniev A. S., Carafoli E. The secondary structure of phospholamban: a two-dimensional NMR study. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1200–1207. doi: 10.1006/bbrc.1995.2896. [DOI] [PubMed] [Google Scholar]
  32. Mayer E. J., McKenna E., Garsky V. M., Burke C. J., Mach H., Middaugh C. R., Sardana M., Smith J. S., Johnson R. G., Jr Biochemical and biophysical comparison of native and chemically synthesized phospholamban and a monomeric phospholamban analog. J Biol Chem. 1996 Jan 19;271(3):1669–1677. doi: 10.1074/jbc.271.3.1669. [DOI] [PubMed] [Google Scholar]
  33. Mortishire-Smith R. J., Pitzenberger S. M., Burke C. J., Middaugh C. R., Garsky V. M., Johnson R. G. Solution structure of the cytoplasmic domain of phopholamban: phosphorylation leads to a local perturbation in secondary structure. Biochemistry. 1995 Jun 13;34(23):7603–7613. doi: 10.1021/bi00023a006. [DOI] [PubMed] [Google Scholar]
  34. Negash S., Chen L. T., Bigelow D. J., Squier T. C. Phosphorylation of phospholamban by cAMP-dependent protein kinase enhances interactions between Ca-ATPase polypeptide chains in cardiac sarcoplasmic reticulum membranes. Biochemistry. 1996 Sep 3;35(35):11247–11259. doi: 10.1021/bi960864q. [DOI] [PubMed] [Google Scholar]
  35. Negash S., Huang S., Squier T. C. Rearrangement of domain elements of the Ca-ATPase in cardiac sarcoplasmic reticulum membranes upon phospholamban phosphorylation. Biochemistry. 1999 Jun 22;38(25):8150–8158. doi: 10.1021/bi990599j. [DOI] [PubMed] [Google Scholar]
  36. Negash S., Sun H., Yao Q., Goh S. Y., Bigelow D. J., Squier T. C. Cytosolic domain of phospholamban remains associated with the Ca-ATPase following phosphorylation by cAMP-dependent protein kinase. Ann N Y Acad Sci. 1998 Sep 16;853:288–291. doi: 10.1111/j.1749-6632.1998.tb08281.x. [DOI] [PubMed] [Google Scholar]
  37. Ogawa H., Stokes D. L., Sasabe H., Toyoshima C. Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9-A resolution. Biophys J. 1998 Jul;75(1):41–52. doi: 10.1016/S0006-3495(98)77493-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pedigo S., Shea M. A. Discontinuous equilibrium titrations of cooperative calcium binding to calmodulin monitored by 1-D 1H-nuclear magnetic resonance spectroscopy. Biochemistry. 1995 Aug 22;34(33):10676–10689. doi: 10.1021/bi00033a044. [DOI] [PubMed] [Google Scholar]
  39. Reddy L. G., Jones L. R., Cala S. E., O'Brian J. J., Tatulian S. A., Stokes D. L. Functional reconstitution of recombinant phospholamban with rabbit skeletal Ca(2+)-ATPase. J Biol Chem. 1995 Apr 21;270(16):9390–9397. doi: 10.1074/jbc.270.16.9390. [DOI] [PubMed] [Google Scholar]
  40. Reddy L. G., Jones L. R., Thomas D. D. Depolymerization of phospholamban in the presence of calcium pump: a fluorescence energy transfer study. Biochemistry. 1999 Mar 30;38(13):3954–3962. doi: 10.1021/bi981795d. [DOI] [PubMed] [Google Scholar]
  41. Royer C. A. Understanding fluorescence decay in proteins. Biophys J. 1993 Jul;65(1):9–10. doi: 10.1016/S0006-3495(93)81024-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sasaki T., Inui M., Kimura Y., Kuzuya T., Tada M. Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase. J Biol Chem. 1992 Jan 25;267(3):1674–1679. [PubMed] [Google Scholar]
  43. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  44. Simmerman H. K., Collins J. H., Theibert J. L., Wegener A. D., Jones L. R. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem. 1986 Oct 5;261(28):13333–13341. [PubMed] [Google Scholar]
  45. Simmerman H. K., Jones L. R. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev. 1998 Oct;78(4):921–947. doi: 10.1152/physrev.1998.78.4.921. [DOI] [PubMed] [Google Scholar]
  46. Squier T. C., Thomas D. D. Selective detection of the rotational dynamics of the protein-associated lipid hydrocarbon chains in sarcoplasmic reticulum membranes. Biophys J. 1989 Oct;56(4):735–748. doi: 10.1016/S0006-3495(89)82721-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stokes D. L. Keeping calcium in its place: Ca(2+)-ATPase and phospholamban. Curr Opin Struct Biol. 1997 Aug;7(4):550–556. doi: 10.1016/s0959-440x(97)80121-2. [DOI] [PubMed] [Google Scholar]
  48. Swenson C. A., Fredricksen R. S. Interaction of troponin C and troponin C fragments with troponin I and the troponin I inhibitory peptide. Biochemistry. 1992 Apr 7;31(13):3420–3429. doi: 10.1021/bi00128a017. [DOI] [PubMed] [Google Scholar]
  49. Szczesna D., Fajer P. G. The tropomyosin domain is flexible and disordered in reconstituted thin filaments. Biochemistry. 1995 Mar 21;34(11):3614–3620. doi: 10.1021/bi00011a016. [DOI] [PubMed] [Google Scholar]
  50. Szymańska G., Kim H. W., Kranias E. G. Reconstitution of the skeletal sarcoplasmic reticulum Ca2(+)-pump: influence of negatively charged phospholipids. Biochim Biophys Acta. 1991 Jan 31;1091(2):127–134. doi: 10.1016/0167-4889(91)90051-x. [DOI] [PubMed] [Google Scholar]
  51. Tada M., Kadoma M., Inui M., Fujii J. Regulation of Ca2+-pump from cardiac sarcoplasmic reticulum. Methods Enzymol. 1988;157:107–154. doi: 10.1016/0076-6879(88)57073-8. [DOI] [PubMed] [Google Scholar]
  52. Tatulian S. A., Jones L. R., Reddy L. G., Stokes D. L., Tamm L. K. Secondary structure and orientation of phospholamban reconstituted in supported bilayers from polarized attenuated total reflection FTIR spectroscopy. Biochemistry. 1995 Apr 4;34(13):4448–4456. doi: 10.1021/bi00013a038. [DOI] [PubMed] [Google Scholar]
  53. Thomas D. D., Reddy L. G., Karim C. B., Li M., Cornea R., Autry J. M., Jones L. R., Stamm J. Direct spectroscopic detection of molecular dynamics and interactions of the calcium pump and phospholamban. Ann N Y Acad Sci. 1998 Sep 16;853:186–194. doi: 10.1111/j.1749-6632.1998.tb08266.x. [DOI] [PubMed] [Google Scholar]
  54. Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1994 Jan 28;269(4):3088–3094. [PubMed] [Google Scholar]
  55. Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J Biol Chem. 1994 Sep 16;269(37):22929–22932. [PubMed] [Google Scholar]
  56. Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. Identification of regions in the Ca(2+)-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. J Biol Chem. 1993 Feb 5;268(4):2809–2815. [PubMed] [Google Scholar]
  57. Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
  58. Toyoshima C., Sasabe H., Stokes D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature. 1993 Apr 1;362(6419):467–471. doi: 10.1038/362469a0. [DOI] [PubMed] [Google Scholar]
  59. Voss J., Jones L. R., Thomas D. D. The physical mechanism of calcium pump regulation in the heart. Biophys J. 1994 Jul;67(1):190–196. doi: 10.1016/S0006-3495(94)80469-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Xu Z. C., Kirchberger M. A. Modulation by polyelectrolytes of canine cardiac microsomal calcium uptake and the possible relationship to phospholamban. J Biol Chem. 1989 Oct 5;264(28):16644–16651. [PubMed] [Google Scholar]
  61. Yao Q., Bevan J. L., Weaver R. F., Bigelow D. J. Purification of porcine phospholamban expressed in Escherichia coli. Protein Expr Purif. 1996 Dec;8(4):463–468. doi: 10.1006/prep.1996.0125. [DOI] [PubMed] [Google Scholar]
  62. Yao Q., Chen L. T., Bigelow D. J. Affinity purification of the Ca-ATPase from cardiac sarcoplasmic reticulum membranes. Protein Expr Purif. 1998 Jul;13(2):191–197. doi: 10.1006/prep.1998.0892. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES