Abstract
Whereas plants and animals use the alpha-aminoadipic acid pathway to catabolize lysine, yeast and fungi use the very same pathway to synthesize lysine. These two groups of organisms also possess structurally distinct forms of two enzymes in this pathway, namely lysine-oxoglutarate reductase (lysine-ketoglutarate reductase; LKR) and saccharopine dehydrogenase (SDH): in plants and animals these enzymes are linked on to a single bifunctional polypeptide, while in yeast and fungi they exist as separate entities. In addition, yeast LKR and SDH possess bi-directional activities, and their anabolic function is regulated by complex transcriptional and post-transcriptional controls, which apparently ascertain differential accumulation of intermediate metabolites; in plants, the regulation of the catabolic function of these two enzymes is not known. To elucidate the regulation of the catabolic function of plant bifunctional LKR/SDH enzymes, we have used yeast as an expression system to test whether a plant LKR/SDH also possesses bi-directional LKR and SDH activities, similar to the yeast enzymes. The Arabidopsis enzyme complemented a yeast SDH, but not LKR, null mutant. Identical results were obtained when deletion mutants encoding only the LKR or SDH domains of this bifunctional polypeptide were expressed individually in the yeast cells. Moreover, activity assays showed that the Arabidopsis LKR possessed catabolic, but not anabolic, activity, and its uni-directional activity stems from its structure rather than its linkage to SDH. Our results suggest that the uni-directional activity of LKR plays an important role in regulating the catabolic function of the alpha-amino adipic acid pathway in plants.
Full Text
The Full Text of this article is available as a PDF (177.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhattacharjee J. K. alpha-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit Rev Microbiol. 1985;12(2):131–151. doi: 10.3109/10408418509104427. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Epelbaum S., McDevitt R., Falco S. C. Lysine-ketoglutarate reductase and saccharopine dehydrogenase from Arabidopsis thaliana: nucleotide sequence and characterization. Plant Mol Biol. 1997 Dec;35(6):735–748. doi: 10.1023/a:1005808923191. [DOI] [PubMed] [Google Scholar]
- Feller A., Dubois E., Ramos F., Piérard A. Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation. Mol Cell Biol. 1994 Oct;14(10):6411–6418. doi: 10.1128/mcb.14.10.6411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fransen M., Van Veldhoven P. P., Subramani S. Identification of peroxisomal proteins by using M13 phage protein VI phage display: molecular evidence that mammalian peroxisomes contain a 2,4-dienoyl-CoA reductase. Biochem J. 1999 Jun 1;340(Pt 2):561–568. [PMC free article] [PubMed] [Google Scholar]
- Gaziola S. A., Teixeira C. M., Lugli J., Sodek L., Azevedo R. A. The enzymology of lysine catabolism in rice seeds--isolation, characterization, and regulatory properties of a lysine 2-oxoglutarate reductase/saccharopine dehydrogenase bifunctional polypeptide. Eur J Biochem. 1997 Jul 1;247(1):364–371. doi: 10.1111/j.1432-1033.1997.00364.x. [DOI] [PubMed] [Google Scholar]
- Goncalves-Butruille M., Szajner P., Torigoi E., Leite A., Arruda P. Purification and Characterization of the Bifunctional Enzyme Lysine-Ketoglutarate Reductase-Saccharopine Dehydrogenase from Maize. Plant Physiol. 1996 Mar;110(3):765–771. doi: 10.1104/pp.110.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinnebusch A. G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1988 Jun;52(2):248–273. doi: 10.1128/mr.52.2.248-273.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemper E. L., Neto G. C., Papes F., Moraes K. C., Leite A., Arruda P. The role of opaque2 in the control of lysine-degrading activities in developing maize endosperm. Plant Cell. 1999 Oct;11(10):1981–1994. doi: 10.1105/tpc.11.10.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Markovitz P. J., Chuang D. T., Cox R. P. Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. J Biol Chem. 1984 Oct 10;259(19):11643–11646. [PubMed] [Google Scholar]
- Markovitz P. J., Chuang D. T. The bifunctional aminoadipic semialdehyde synthase in lysine degradation. Separation of reductase and dehydrogenase domains by limited proteolysis and column chromatography. J Biol Chem. 1987 Jul 5;262(19):9353–9358. [PubMed] [Google Scholar]
- Miron D., Ben-Yaacov S., Reches D., Schupper A., Galili G. Purification and characterization of bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase from developing soybean seeds. Plant Physiol. 2000 Jun;123(2):655–664. doi: 10.1104/pp.123.2.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noda C., Ichihara A. Purification and properties of L-lysine-alpha-ketoglutarate reductase from rat liver mitochondria. Biochim Biophys Acta. 1978 Aug 7;525(2):307–313. doi: 10.1016/0005-2744(78)90225-5. [DOI] [PubMed] [Google Scholar]
- Saunders P. P., Broquist H. P. Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis. IV. Saccharopine dehydrogenase. J Biol Chem. 1966 Jul 25;241(14):3435–3440. [PubMed] [Google Scholar]
- Shimoni Y., Blechl A. E., Anderson O. D., Galili G. A recombinant protein of two high molecular weight glutenins alters gluten polymer formation in transgenic wheat. J Biol Chem. 1997 Jun 13;272(24):15488–15495. doi: 10.1074/jbc.272.24.15488. [DOI] [PubMed] [Google Scholar]
- Simonson M. S., Eckel R. E. Enzymatic measurement of saccharopine with saccharopine dehydrogenase. Anal Biochem. 1985 May 15;147(1):230–233. doi: 10.1016/0003-2697(85)90032-6. [DOI] [PubMed] [Google Scholar]
- Su W., Mertens J. A., Kanamaru K., Campbell W. H., Crawford N. M. Analysis of wild-type and mutant plant nitrate reductase expressed in the methylotrophic yeast Pichia pastoris. Plant Physiol. 1997 Nov;115(3):1135–1143. doi: 10.1104/pp.115.3.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang G., Miron D., Zhu-Shimoni J. X., Galili G. Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis. Plant Cell. 1997 Aug;9(8):1305–1316. doi: 10.1105/tpc.9.8.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor K. M., Kaplan C. P., Gao X., Baker A. Localization and targeting of isocitrate lyases in Saccharomyces cerevisiae. Biochem J. 1996 Oct 1;319(Pt 1):255–262. doi: 10.1042/bj3190255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vernet T., Dignard D., Thomas D. Y. A family of yeast expression vectors containing the phage f1 intergenic region. Gene. 1987;52(2-3):225–233. doi: 10.1016/0378-1119(87)90049-7. [DOI] [PubMed] [Google Scholar]