Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 1;351(Pt 1):257–264. doi: 10.1042/0264-6021:3510257

Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells: localization of JAK/STAT signalling proteins in plasmalemmal caveolae.

H Ju 1, V J Venema 1, H Liang 1, M B Harris 1, R Zou 1, R C Venema 1
PMCID: PMC1221357  PMID: 10998369

Abstract

Bradykinin (BK) is an important physiological regulator of endothelial cell function. In the present study, we have examined the role of the Janus-activated kinase (JAK)/signal transducers and activators of transcription (STAT) pathway in endothelial signal transduction through the BK B2 receptor (B2R). In cultured bovine aortic endothelial cells (BAECs), BK activates Tyk2 of the JAK family of tyrosine kinases. Activation results in the tyrosine phosphorylation and subsequent nuclear translocation of STAT3. BK also activates the mitogen-activated p44 and p42 protein kinases, resulting in STAT3 serine phosphorylation. Furthermore, Tyk2 and STAT3 form a complex with the B2R in response to BK stimulation. Under basal conditions, Tyk2, STAT3 and the B2R are localized either partially or entirely in endothelial plasmalemmal caveolae. Following BK stimulation of BAECs, however, the B2R and STAT3 are translocated out of caveolae. Taken together, these data suggest that BK activates the JAK/STAT pathway in endothelial cells and that JAK/STAT signalling proteins are localized in endothelial caveolae. Moreover, caveolar localization of the B2R and STAT3 appears to be regulated in an agonist-dependent manner.

Full Text

The Full Text of this article is available as a PDF (230.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. J., Barakeh J., Laskey R., Van Breemen C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989 Oct;3(12):2389–2400. doi: 10.1096/fasebj.3.12.2477294. [DOI] [PubMed] [Google Scholar]
  2. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
  3. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
  4. Ali M. S., Sayeski P. P., Dirksen L. B., Hayzer D. J., Marrero M. B., Bernstein K. E. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J Biol Chem. 1997 Sep 12;272(37):23382–23388. doi: 10.1074/jbc.272.37.23382. [DOI] [PubMed] [Google Scholar]
  5. Amiri F., Venema V. J., Wang X., Ju H., Venema R. C., Marrero M. B. Hyperglycemia enhances angiotensin II-induced janus-activated kinase/STAT signaling in vascular smooth muscle cells. J Biol Chem. 1999 Nov 5;274(45):32382–32386. doi: 10.1074/jbc.274.45.32382. [DOI] [PubMed] [Google Scholar]
  6. Bhat G. J., Abraham S. T., Singer H. A., Baker K. M. Alpha-thrombin stimulates sis-inducing factor-A DNA binding activity in rat aortic smooth muscle cells. Hypertension. 1997 Jan;29(1 Pt 2):356–360. doi: 10.1161/01.hyp.29.1.356. [DOI] [PubMed] [Google Scholar]
  7. Bright J. J., Du C., Sriram S. Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J Immunol. 1999 May 15;162(10):6255–6262. [PubMed] [Google Scholar]
  8. Busse R., Fleming I. Molecular responses of endothelial tissue to kinins. Diabetes. 1996 Jan;45 (Suppl 1):S8–13. doi: 10.2337/diab.45.1.s8. [DOI] [PubMed] [Google Scholar]
  9. Chaturvedi P., Reddy M. V., Reddy E. P. Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation. Oncogene. 1998 Apr 2;16(13):1749–1758. doi: 10.1038/sj.onc.1201972. [DOI] [PubMed] [Google Scholar]
  10. Darnell J. E., Jr, Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994 Jun 3;264(5164):1415–1421. doi: 10.1126/science.8197455. [DOI] [PubMed] [Google Scholar]
  11. Darnell J. E., Jr STATs and gene regulation. Science. 1997 Sep 12;277(5332):1630–1635. doi: 10.1126/science.277.5332.1630. [DOI] [PubMed] [Google Scholar]
  12. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dikic I., Tokiwa G., Lev S., Courtneidge S. A., Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996 Oct 10;383(6600):547–550. doi: 10.1038/383547a0. [DOI] [PubMed] [Google Scholar]
  14. Dostal D. E., Hunt R. A., Kule C. E., Bhat G. J., Karoor V., McWhinney C. D., Baker K. M. Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways. J Mol Cell Cardiol. 1997 Nov;29(11):2893–2902. doi: 10.1006/jmcc.1997.0524. [DOI] [PubMed] [Google Scholar]
  15. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fleming I., Fisslthaler B., Busse R. Calcium signaling in endothelial cells involves activation of tyrosine kinases and leads to activation of mitogen-activated protein kinases. Circ Res. 1995 Apr;76(4):522–529. doi: 10.1161/01.res.76.4.522. [DOI] [PubMed] [Google Scholar]
  17. Guillet-Deniau I., Burnol A. F., Girard J. Identification and localization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J Biol Chem. 1997 Jun 6;272(23):14825–14829. doi: 10.1074/jbc.272.23.14825. [DOI] [PubMed] [Google Scholar]
  18. Hanke J. H., Gardner J. P., Dow R. L., Changelian P. S., Brissette W. H., Weringer E. J., Pollok B. A., Connelly P. A. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem. 1996 Jan 12;271(2):695–701. doi: 10.1074/jbc.271.2.695. [DOI] [PubMed] [Google Scholar]
  19. Hess J. F., Borkowski J. A., Macneil T., Stonesifer G. Y., Fraher J., Strader C. D., Ransom R. W. Differential pharmacology of cloned human and mouse B2 bradykinin receptors. Mol Pharmacol. 1994 Jan;45(1):1–8. [PubMed] [Google Scholar]
  20. Hess J. F., Borkowski J. A., Young G. S., Strader C. D., Ransom R. W. Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun. 1992 Apr 15;184(1):260–268. doi: 10.1016/0006-291x(92)91187-u. [DOI] [PubMed] [Google Scholar]
  21. Ju H., Venema V. J., Marrero M. B., Venema R. C. Inhibitory interactions of the bradykinin B2 receptor with endothelial nitric-oxide synthase. J Biol Chem. 1998 Sep 11;273(37):24025–24029. doi: 10.1074/jbc.273.37.24025. [DOI] [PubMed] [Google Scholar]
  22. Koshelnick Y., Ehart M., Hufnagl P., Heinrich P. C., Binder B. R. Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J Biol Chem. 1997 Nov 7;272(45):28563–28567. doi: 10.1074/jbc.272.45.28563. [DOI] [PubMed] [Google Scholar]
  23. Lev S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J. M., Plowman G. D., Rudy B., Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737–745. doi: 10.1038/376737a0. [DOI] [PubMed] [Google Scholar]
  24. Liang H., Venema V. J., Wang X., Ju H., Venema R. C., Marrero M. B. Regulation of angiotensin II-induced phosphorylation of STAT3 in vascular smooth muscle cells. J Biol Chem. 1999 Jul 9;274(28):19846–19851. doi: 10.1074/jbc.274.28.19846. [DOI] [PubMed] [Google Scholar]
  25. Marrero M. B., Schieffer B., Paxton W. G., Heerdt L., Berk B. C., Delafontaine P., Bernstein K. E. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature. 1995 May 18;375(6528):247–250. doi: 10.1038/375247a0. [DOI] [PubMed] [Google Scholar]
  26. Marrero M. B., Venema V. J., Ju H., Eaton D. C., Venema R. C. Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. Am J Physiol. 1998 Nov;275(5 Pt 1):C1216–C1223. doi: 10.1152/ajpcell.1998.275.5.C1216. [DOI] [PubMed] [Google Scholar]
  27. Marrero M. B., Venema V. J., Ju H., He H., Liang H., Caldwell R. B., Venema R. C. Endothelial nitric oxide synthase interactions with G-protein-coupled receptors. Biochem J. 1999 Oct 15;343(Pt 2):335–340. [PMC free article] [PubMed] [Google Scholar]
  28. Martin T. W., Wysolmerski R. B. Ca2+-dependent and Ca2+-independent pathways for release of arachidonic acid from phosphatidylinositol in endothelial cells. J Biol Chem. 1987 Sep 25;262(27):13086–13092. [PubMed] [Google Scholar]
  29. McEachern A. E., Shelton E. R., Bhakta S., Obernolte R., Bach C., Zuppan P., Fujisaki J., Aldrich R. W., Jarnagin K. Expression cloning of a rat B2 bradykinin receptor. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7724–7728. doi: 10.1073/pnas.88.17.7724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McWhinney C. D., Hunt R. A., Conrad K. M., Dostal D. E., Baker K. M. The type I angiotensin II receptor couples to Stat1 and Stat3 activation through Jak2 kinase in neonatal rat cardiac myocytes. J Mol Cell Cardiol. 1997 Sep;29(9):2513–2524. doi: 10.1006/jmcc.1997.0489. [DOI] [PubMed] [Google Scholar]
  31. Murphy T. J., Alexander R. W., Griendling K. K., Runge M. S., Bernstein K. E. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991 May 16;351(6323):233–236. doi: 10.1038/351233a0. [DOI] [PubMed] [Google Scholar]
  32. Okamoto T., Schlegel A., Scherer P. E., Lisanti M. P. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem. 1998 Mar 6;273(10):5419–5422. doi: 10.1074/jbc.273.10.5419. [DOI] [PubMed] [Google Scholar]
  33. Peeler T. C., Conrad K. M., Baker K. M. Endothelin stimulates sis-inducing factor-like DNA binding activity in CHO-K1 cells expressing ETA receptors. Biochem Biophys Res Commun. 1996 Apr 5;221(1):62–66. doi: 10.1006/bbrc.1996.0545. [DOI] [PubMed] [Google Scholar]
  34. Rodríguez-Liñares B., Watson S. P. Phosphorylation of JAK2 in thrombin-stimulated human platelets. FEBS Lett. 1994 Oct 3;352(3):335–338. doi: 10.1016/0014-5793(94)00983-x. [DOI] [PubMed] [Google Scholar]
  35. Ross D., Joyner W. L. Resting distribution and stimulated translocation of protein kinase C isoforms alpha, epsilon and zeta in response to bradykinin and TNF in human endothelial cells. Endothelium. 1997;5(4):321–332. doi: 10.3109/10623329709052596. [DOI] [PubMed] [Google Scholar]
  36. Song K. S., Li Shengwen, Okamoto T., Quilliam L. A., Sargiacomo M., Lisanti M. P. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem. 1996 Apr 19;271(16):9690–9697. doi: 10.1074/jbc.271.16.9690. [DOI] [PubMed] [Google Scholar]
  37. Venema R. C., Venema V. J., Eaton D. C., Marrero M. B. Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1. J Biol Chem. 1998 Nov 13;273(46):30795–30800. doi: 10.1074/jbc.273.46.30795. [DOI] [PubMed] [Google Scholar]
  38. Venema V. J., Ju H., Sun J., Eaton D. C., Marrero M. B., Venema R. C. Bradykinin stimulates the tyrosine phosphorylation and bradykinin B2 receptor association of phospholipase C gamma 1 in vascular endothelial cells. Biochem Biophys Res Commun. 1998 May 8;246(1):70–75. doi: 10.1006/bbrc.1998.8574. [DOI] [PubMed] [Google Scholar]
  39. Venema V. J., Marrero M. B., Venema R. C. Bradykinin-stimulated protein tyrosine phosphorylation promotes endothelial nitric oxide synthase translocation to the cytoskeleton. Biochem Biophys Res Commun. 1996 Sep 24;226(3):703–710. doi: 10.1006/bbrc.1996.1417. [DOI] [PubMed] [Google Scholar]
  40. Venema V. J., Zou R., Ju H., Marrero M. B., Venema R. C. Caveolin-1 detergent solubility and association with endothelial nitric oxide synthase is modulated by tyrosine phosphorylation. Biochem Biophys Res Commun. 1997 Jul 9;236(1):155–161. doi: 10.1006/bbrc.1997.6921. [DOI] [PubMed] [Google Scholar]
  41. Wen Z., Darnell J. E., Jr Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 1997 Jun 1;25(11):2062–2067. doi: 10.1093/nar/25.11.2062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wen Z., Zhong Z., Darnell J. E., Jr Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995 Jul 28;82(2):241–250. doi: 10.1016/0092-8674(95)90311-9. [DOI] [PubMed] [Google Scholar]
  43. Zhang X., Blenis J., Li H. C., Schindler C., Chen-Kiang S. Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science. 1995 Mar 31;267(5206):1990–1994. doi: 10.1126/science.7701321. [DOI] [PubMed] [Google Scholar]
  44. de Weerd W. F., Leeb-Lundberg L. M. Bradykinin sequesters B2 bradykinin receptors and the receptor-coupled Galpha subunits Galphaq and Galphai in caveolae in DDT1 MF-2 smooth muscle cells. J Biol Chem. 1997 Jul 11;272(28):17858–17866. doi: 10.1074/jbc.272.28.17858. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES