Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 1;351(Pt 1):13–17. doi: 10.1042/0264-6021:3510013

Association of several small heat-shock proteins with reproductive tissues in the nematode Caenorhabditis elegans.

L Ding 1, E P Candido 1
PMCID: PMC1221361  PMID: 11001875

Abstract

Immunohistochemical data on 10 of the 14 small heat-shock (smHSPs) proteins in fourth larval stage and adult Caenorhabditis elegans show that the tissues expressing the greatest number of smHSPs are vulva (HSP12s, HSP43 and, under stress, HSP16s) and spermatheca (HSP12s, HSP25, HSP43 and, under stress, HSP16s). HSP43 is also expressed in male tail structures, and following heat-shock HSP16s are expressed in spermatids and spermatozoa.

Full Text

The Full Text of this article is available as a PDF (236.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biggiogera M., Tanguay R. M., Marin R., Wu Y., Martin T. E., Fakan S. Localization of heat shock proteins in mouse male germ cells: an immunoelectron microscopical study. Exp Cell Res. 1996 Nov 25;229(1):77–85. doi: 10.1006/excr.1996.0345. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ding L., Candido E. P. HSP25, a small heat shock protein associated with dense bodies and M-lines of body wall muscle in Caenorhabditis elegans. J Biol Chem. 2000 Mar 31;275(13):9510–9517. doi: 10.1074/jbc.275.13.9510. [DOI] [PubMed] [Google Scholar]
  5. Ding L., Candido E. P. HSP43, a small heat-shock protein localized to specific cells of the vulva and spermatheca in the nematode Caenorhabditis elegans. Biochem J. 2000 Jul 15;349(Pt 2):409–412. doi: 10.1042/0264-6021:3490409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Finney M., Ruvkun G. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell. 1990 Nov 30;63(5):895–905. doi: 10.1016/0092-8674(90)90493-x. [DOI] [PubMed] [Google Scholar]
  7. Hockertz M. K., Clark-Lewis I., Candido E. P. Studies of the small heat shock proteins of Caenorhabditis elegans using anti-peptide antibodies. FEBS Lett. 1991 Mar 25;280(2):375–378. doi: 10.1016/0014-5793(91)80335-z. [DOI] [PubMed] [Google Scholar]
  8. Jones D., Dixon D. K., Graham R. W., Candido E. P. Differential regulation of closely related members of the hsp16 gene family in Caenorhabditis elegans. DNA. 1989 Sep;8(7):481–490. doi: 10.1089/dna.1.1989.8.481. [DOI] [PubMed] [Google Scholar]
  9. Jones D., Russnak R. H., Kay R. J., Candido E. P. Structure, expression, and evolution of a heat shock gene locus in Caenorhabditis elegans that is flanked by repetitive elements. J Biol Chem. 1986 Sep 15;261(26):12006–12015. [PubMed] [Google Scholar]
  10. Jones D., Stringham E. G., Babich S. L., Candido E. P. Transgenic strains of the nematode C. elegans in biomonitoring and toxicology: effects of captan and related compounds on the stress response. Toxicology. 1996 May 17;109(2-3):119–127. doi: 10.1016/0300-483x(96)03316-1. [DOI] [PubMed] [Google Scholar]
  11. Kokke B. P., Leroux M. R., Candido E. P., Boelens W. C., de Jong W. W. Caenorhabditis elegans small heat-shock proteins Hsp12.2 and Hsp12.3 form tetramers and have no chaperone-like activity. FEBS Lett. 1998 Aug 21;433(3):228–232. doi: 10.1016/s0014-5793(98)00917-x. [DOI] [PubMed] [Google Scholar]
  12. Lavoie J. N., Hickey E., Weber L. A., Landry J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem. 1993 Nov 15;268(32):24210–24214. [PubMed] [Google Scholar]
  13. Leroux M. R., Ma B. J., Batelier G., Melki R., Candido E. P. Unique structural features of a novel class of small heat shock proteins. J Biol Chem. 1997 May 9;272(19):12847–12853. doi: 10.1074/jbc.272.19.12847. [DOI] [PubMed] [Google Scholar]
  14. Leroux M. R., Melki R., Gordon B., Batelier G., Candido E. P. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J Biol Chem. 1997 Sep 26;272(39):24646–24656. doi: 10.1074/jbc.272.39.24646. [DOI] [PubMed] [Google Scholar]
  15. Linder B., Jin Z., Freedman J. H., Rubin C. S. Molecular characterization of a novel, developmentally regulated small embryonic chaperone from Caenorhabditis elegans. J Biol Chem. 1996 Nov 22;271(47):30158–30166. doi: 10.1074/jbc.271.47.30158. [DOI] [PubMed] [Google Scholar]
  16. Loer C. M., Kenyon C. J. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J Neurosci. 1993 Dec;13(12):5407–5417. doi: 10.1523/JNEUROSCI.13-12-05407.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marin R., Tanguay R. M. Stage-specific localization of the small heat shock protein Hsp27 during oogenesis in Drosophila melanogaster. Chromosoma. 1996 Sep;105(3):142–149. doi: 10.1007/BF02509495. [DOI] [PubMed] [Google Scholar]
  18. Michaud S., Marin R., Westwood J. T., Tanguay R. M. Cell-specific expression and heat-shock induction of Hsps during spermatogenesis in Drosophila melanogaster. J Cell Sci. 1997 Sep;110(Pt 17):1989–1997. doi: 10.1242/jcs.110.17.1989. [DOI] [PubMed] [Google Scholar]
  19. Miller D. M., 3rd, Ortiz I., Berliner G. C., Epstein H. F. Differential localization of two myosins within nematode thick filaments. Cell. 1983 Sep;34(2):477–490. doi: 10.1016/0092-8674(83)90381-1. [DOI] [PubMed] [Google Scholar]
  20. Perng M. D., Cairns L., van den IJssel P., Prescott A., Hutcheson A. M., Quinlan R. A. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci. 1999 Jul;112(Pt 13):2099–2112. doi: 10.1242/jcs.112.13.2099. [DOI] [PubMed] [Google Scholar]
  21. Préville X., Salvemini F., Giraud S., Chaufour S., Paul C., Stepien G., Ursini M. V., Arrigo A. P. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res. 1999 Feb 25;247(1):61–78. doi: 10.1006/excr.1998.4347. [DOI] [PubMed] [Google Scholar]
  22. Russnak R. H., Candido E. P. Locus encoding a family of small heat shock genes in Caenorhabditis elegans: two genes duplicated to form a 3.8-kilobase inverted repeat. Mol Cell Biol. 1985 Jun;5(6):1268–1278. doi: 10.1128/mcb.5.6.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Seydoux G., Mello C. C., Pettitt J., Wood W. B., Priess J. R., Fire A. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature. 1996 Aug 22;382(6593):713–716. doi: 10.1038/382713a0. [DOI] [PubMed] [Google Scholar]
  24. Stringham E. G., Dixon D. K., Jones D., Candido E. P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol Biol Cell. 1992 Feb;3(2):221–233. doi: 10.1091/mbc.3.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wakayama T., Iseki S. Specific expression of the mRNA for 25 kDA heat-shock protein in the spermatocytes of mouse seminiferous tubules. Anat Embryol (Berl) 1999 May;199(5):419–425. doi: 10.1007/s004290050240. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES