Abstract
Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11), an important gluconeogenic enzyme, catalyses the hydrolysis of fructose 1, 6-bisphosphate to fructose 6-phosphate and P(i). Enzyme activity is mainly regulated by the allosteric inhibitors fructose 2, 6-bisphosphate and AMP. Although some observations about hormonal regulation of the enzyme have been published, the FBPase promoter has not been studied in detail. Here we report an in vitro characterization of the FBPase promoter with respect to the elements that are required for basal promoter activity. Transient transfection of H4IIE rat hepatoma cells, combined with site-directed mutagenesis, demonstrated that an enhancer box, three GC-boxes and a nuclear factor kappaB (NF-kappaB)-binding element are important for hepatic FBPase promoter activity. These elements are found in the region located between -405 to +25 bp relative to the transcription start site. Electrophoretic-mobility-shift assays and supershift analysis confirmed that upstream stimulatory factor 1 (USF1)/USF2, specificity protein 1 (Sp1)/Sp3 and NF-kappaB respectively bind to these sites. The present study provides the basis for a more comprehensive screening for mutations in FBPase-deficient patients and for further studies of the transcriptional regulation of this gene.
Full Text
The Full Text of this article is available as a PDF (251.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrikopoulos S., Rosella G., Gaskin E., Thorburn A., Kaczmarczyk S., Zajac J. D., Proietto J. Impaired regulation of hepatic fructose-1,6-bisphosphatase in the New Zealand obese mouse model of NIDDM. Diabetes. 1993 Dec;42(12):1731–1736. doi: 10.2337/diab.42.12.1731. [DOI] [PubMed] [Google Scholar]
- Baeuerle P. A., Baltimore D. NF-kappa B: ten years after. Cell. 1996 Oct 4;87(1):13–20. doi: 10.1016/s0092-8674(00)81318-5. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 May 2;89(3):331–340. doi: 10.1016/s0092-8674(00)80213-5. [DOI] [PubMed] [Google Scholar]
- Burchell A., Lyall H., Busuttil A., Bell E., Hume R. Glucose metabolism and hypoglycaemia in SIDS. J Clin Pathol. 1992 Nov;45(11 Suppl):39–45. [PubMed] [Google Scholar]
- Casado M., Vallet V. S., Kahn A., Vaulont S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J Biol Chem. 1999 Jan 22;274(4):2009–2013. doi: 10.1074/jbc.274.4.2009. [DOI] [PubMed] [Google Scholar]
- Cassuto H., Olswang Y., Livoff A. F., Nechushtan H., Hanson R. W., Reshef L. Involvement of HNF-1 in the regulation of phosphoenolpyruvate carboxykinase gene expression in the kidney. FEBS Lett. 1997 Aug 4;412(3):597–602. doi: 10.1016/s0014-5793(97)00867-3. [DOI] [PubMed] [Google Scholar]
- Emery J. L., Howat A. J., Variend S., Vawter G. F. Investigation of inborn errors of metabolism in unexpected infant deaths. Lancet. 1988 Jul 2;2(8601):29–31. doi: 10.1016/s0140-6736(88)92955-8. [DOI] [PubMed] [Google Scholar]
- Granner D., Pilkis S. The genes of hepatic glucose metabolism. J Biol Chem. 1990 Jun 25;265(18):10173–10176. [PubMed] [Google Scholar]
- Grilli M., Chiu J. J., Lenardo M. J. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol. 1993;143:1–62. doi: 10.1016/s0074-7696(08)61873-2. [DOI] [PubMed] [Google Scholar]
- Hagen G., Müller S., Beato M., Suske G. Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes. Nucleic Acids Res. 1992 Nov 11;20(21):5519–5525. doi: 10.1093/nar/20.21.5519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagen G., Müller S., Beato M., Suske G. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 1994 Aug 15;13(16):3843–3851. doi: 10.1002/j.1460-2075.1994.tb06695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall R. K., Scott D. K., Noisin E. L., Lucas P. C., Granner D. K. Activation of the phosphoenolpyruvate carboxykinase gene retinoic acid response element is dependent on a retinoic acid receptor/coregulator complex. Mol Cell Biol. 1992 Dec;12(12):5527–5535. doi: 10.1128/mcb.12.12.5527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall R. K., Sladek F. M., Granner D. K. The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):412–416. doi: 10.1073/pnas.92.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzog B., Wendel U., Morris A. A., Eschrich K. Novel mutations in patients with fructose-1,6-bisphosphatase deficiency. J Inherit Metab Dis. 1999 Apr;22(2):132–138. doi: 10.1023/a:1005489617843. [DOI] [PubMed] [Google Scholar]
- Iynedjian P. B. Identification of upstream stimulatory factor as transcriptional activator of the liver promoter of the glucokinase gene. Biochem J. 1998 Aug 1;333(Pt 3):705–712. doi: 10.1042/bj3330705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kikawa Y., Inuzuka M., Jin B. Y., Kaji S., Koga J., Yamamoto Y., Fujisawa K., Hata I., Nakai A., Shigematsu Y. Identification of genetic mutations in Japanese patients with fructose-1,6-bisphosphatase deficiency. Am J Hum Genet. 1997 Oct;61(4):852–861. doi: 10.1086/514875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. S., Lee C. H., Chung J. H. Studying the recruitment of Sp1 to the beta-globin promoter with an in vivo method: protein position identification with nuclease tail (PIN*POINT). Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):969–974. doi: 10.1073/pnas.95.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin B., Morris D. W., Chou J. Y. The role of HNF1alpha, HNF3gamma, and cyclic AMP in glucose-6-phosphatase gene activation. Biochemistry. 1997 Nov 18;36(46):14096–14106. doi: 10.1021/bi9703249. [DOI] [PubMed] [Google Scholar]
- Mantovani R. A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res. 1998 Mar 1;26(5):1135–1143. doi: 10.1093/nar/26.5.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura M., Takihara Y., Yasunaga T., Shimada K. One of the retinoic acid-inducible cDNA clones in mouse embryonal carcinoma F9 cells encodes a novel isoenzyme of fructose 1,6-bisphosphatase. FEBS Lett. 1994 Jul 11;348(2):201–205. doi: 10.1016/0014-5793(94)00608-3. [DOI] [PubMed] [Google Scholar]
- Qian J., Kaytor E. N., Towle H. C., Olson L. K. Upstream stimulatory factor regulates Pdx-1 gene expression in differentiated pancreatic beta-cells. Biochem J. 1999 Jul 15;341(Pt 2):315–322. [PMC free article] [PubMed] [Google Scholar]
- Quinn P. G., Wong T. W., Magnuson M. A., Shabb J. B., Granner D. K. Identification of basal and cyclic AMP regulatory elements in the promoter of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1988 Aug;8(8):3467–3475. doi: 10.1128/mcb.8.8.3467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qyang Y., Luo X., Lu T., Ismail P. M., Krylov D., Vinson C., Sawadogo M. Cell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation. Mol Cell Biol. 1999 Feb;19(2):1508–1517. doi: 10.1128/mcb.19.2.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roder K., Wolf S. S., Sickinger S., Schweizer M. FIRE3 in the promoter of the rat fatty acid synthase (FAS) gene binds the ubiquitous transcription factors CBF and USF but does not mediate an insulin response in a rat hepatoma cell line. Eur J Biochem. 1999 Mar;260(3):743–751. doi: 10.1046/j.1432-1327.1999.00216.x. [DOI] [PubMed] [Google Scholar]
- Rothschild C. B., Freedman B. I., Hodge R., Rao P. N., Pettenati M. J., Anderson R. A., Akots G., Qadri A., Roh B., Fajans S. S. Fructose-1,6-bisphosphatase: genetic and physical mapping to human chromosome 9q22.3 and evaluation in non-insulin-dependent diabetes mellitus. Genomics. 1995 Sep 1;29(1):187–194. doi: 10.1006/geno.1995.1230. [DOI] [PubMed] [Google Scholar]
- Sawadogo M., Van Dyke M. W., Gregor P. D., Roeder R. G. Multiple forms of the human gene-specific transcription factor USF. I. Complete purification and identification of USF from HeLa cell nuclei. J Biol Chem. 1988 Aug 25;263(24):11985–11993. [PubMed] [Google Scholar]
- Sirito M., Lin Q., Deng J. M., Behringer R. R., Sawadogo M. Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3758–3763. doi: 10.1073/pnas.95.7.3758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirito M., Lin Q., Maity T., Sawadogo M. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res. 1994 Feb 11;22(3):427–433. doi: 10.1093/nar/22.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solomon D. H., Raynal M. C., Tejwani G. A., Cayre Y. E. Activation of the fructose 1,6-bisphosphatase gene by 1,25-dihydroxyvitamin D3 during monocytic differentiation. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6904–6908. doi: 10.1073/pnas.85.18.6904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suske G. The Sp-family of transcription factors. Gene. 1999 Oct 1;238(2):291–300. doi: 10.1016/s0378-1119(99)00357-1. [DOI] [PubMed] [Google Scholar]
- Tillmann H., Eschrich K. Isolation and characterization of an allelic cDNA for human muscle fructose-1,6-bisphosphatase. Gene. 1998 Jun 8;212(2):295–304. doi: 10.1016/s0378-1119(98)00181-4. [DOI] [PubMed] [Google Scholar]
- Tillmann H., Stein S., Liehr T., Eschrich K. Structure and chromosomal localization of the human and mouse muscle fructose-1,6-bisphosphatase genes. Gene. 2000 Apr 18;247(1-2):241–253. doi: 10.1016/s0378-1119(00)00079-2. [DOI] [PubMed] [Google Scholar]
- Towle H. C. Metabolic regulation of gene transcription in mammals. J Biol Chem. 1995 Oct 6;270(40):23235–23238. doi: 10.1074/jbc.270.40.23235. [DOI] [PubMed] [Google Scholar]
- Tsai C. N., Lee C. M., Chien C. K., Kuo S. C., Chang Y. S. Additive effect of Sp1 and Sp3 in regulation of the ED-L1E promoter of the EBV LMP 1 gene in human epithelial cells. Virology. 1999 Sep 1;261(2):288–294. doi: 10.1006/viro.1999.9851. [DOI] [PubMed] [Google Scholar]
- Vallet V. S., Casado M., Henrion A. A., Bucchini D., Raymondjean M., Kahn A., Vaulont S. Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose. J Biol Chem. 1998 Aug 7;273(32):20175–20179. doi: 10.1074/jbc.273.32.20175. [DOI] [PubMed] [Google Scholar]
- Vaulont S., Kahn A. Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J. 1994 Jan;8(1):28–35. doi: 10.1096/fasebj.8.1.8299888. [DOI] [PubMed] [Google Scholar]
- Vaulont S., Puzenat N., Levrat F., Cognet M., Kahn A., Raymondjean M. Proteins binding to the liver-specific pyruvate kinase gene promoter. A unique combination of known factors. J Mol Biol. 1989 Sep 20;209(2):205–219. doi: 10.1016/0022-2836(89)90273-8. [DOI] [PubMed] [Google Scholar]
- Viollet B., Lefrançois-Martinez A. M., Henrion A., Kahn A., Raymondjean M., Martinez A. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms. J Biol Chem. 1996 Jan 19;271(3):1405–1415. doi: 10.1074/jbc.271.3.1405. [DOI] [PubMed] [Google Scholar]
- Wang J. C., Strömstedt P. E., O'Brien R. M., Granner D. K. Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Mol Endocrinol. 1996 Jul;10(7):794–800. doi: 10.1210/mend.10.7.8813720. [DOI] [PubMed] [Google Scholar]
- Zhou G., Kuo M. T. NF-kappaB-mediated induction of mdr1b expression by insulin in rat hepatoma cells. J Biol Chem. 1997 Jun 13;272(24):15174–15183. doi: 10.1074/jbc.272.24.15174. [DOI] [PubMed] [Google Scholar]
- el-Maghrabi M. R., Lange A. J., Jiang W., Yamagata K., Stoffel M., Takeda J., Fernald A. A., Le Beau M. M., Bell G. I., Baker L. Human fructose-1,6-bisphosphatase gene (FBP1): exon-intron organization, localization to chromosome bands 9q22.2-q22.3, and mutation screening in subjects with fructose-1,6-bisphosphatase deficiency. Genomics. 1995 Jun 10;27(3):520–525. doi: 10.1006/geno.1995.1085. [DOI] [PubMed] [Google Scholar]
- el-Maghrabi M. R., Lange A. J., Kümmel L., Pilkis S. J. The rat fructose-1,6-bisphosphatase gene. Structure and regulation of expression. J Biol Chem. 1991 Feb 5;266(4):2115–2120. [PubMed] [Google Scholar]
- el-Maghrabi M. R., Pilkis J., Marker A. J., Colosia A. D., D'Angelo G., Fraser B. A., Pilkis S. J. cDNA sequence of rat liver fructose-1,6-bisphosphatase and evidence for down-regulation of its mRNA by insulin. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8430–8434. doi: 10.1073/pnas.85.22.8430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van den Berghe G. Disorders of gluconeogenesis. J Inherit Metab Dis. 1996;19(4):470–477. doi: 10.1007/BF01799108. [DOI] [PubMed] [Google Scholar]