Abstract
Calpain (Ca(2+)-dependent intracellular protease)-induced proteolysis has been considered to play a role in myoblast fusion to myotubes. We found previously that calpastatin (the endogenous inhibitor of calpain) diminishes transiently during myoblast differentiation. To gain information about the regulation of calpain and calpastatin in differentiating myoblasts, we evaluated the stability and synthesis of calpain and calpastatin, and measured their mRNA levels in L8 myoblasts. We show here that mu-calpain and m-calpain are stable, long-lived proteins in both dividing and differentiating L8 myoblasts. Calpain is synthesized in differentiating myoblasts, and calpain mRNA levels do not change during differentiation. In contrast, calpastatin (though also a long-lived protein in myoblasts), is less stable in differentiating myoblasts than in the dividing cells, and its synthesis is inhibited upon initiation of differentiation. Inhibition of calpastatin synthesis is followed by a diminution in calpastatin mRNA levels. A similar calpastatin mRNA diminution is observed upon drug-induced inhibition of protein translation. On the other hand, transforming growth factor beta (which inhibits differentiation) allows calpastatin synthesis and prevents the diminution in calpastatin mRNA. The overall results suggest that at the onset of myoblast differentiation, calpastatin is regulated mainly at the level of translation and that an inhibition of calpastatin synthesis leads to the decrease in its mRNA stability. The existing calpastatin then diminishes, resulting in decreased calpastatin activity in the fusing myoblasts, allowing calpain activation and protein degradation required for fusion.
Full Text
The Full Text of this article is available as a PDF (212.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe M., Saitoh O., Nakata H., Yoda A., Matsuda R. Expression of neurofilament proteins in proliferating C2C12 mouse skeletal muscle cells. Exp Cell Res. 1996 Nov 25;229(1):48–59. doi: 10.1006/excr.1996.0342. [DOI] [PubMed] [Google Scholar]
- Aoki K., Imajoh S., Ohno S., Emori Y., Koike M., Kosaki G., Suzuki K. Complete amino acid sequence of the large subunit of the low-Ca2+-requiring form of human Ca2+-activated neutral protease (muCANP) deduced from its cDNA sequence. FEBS Lett. 1986 Sep 15;205(2):313–317. doi: 10.1016/0014-5793(86)80919-x. [DOI] [PubMed] [Google Scholar]
- Balcerzak D., Cottin P., Poussard S., Cucuron A., Brustis J. J., Ducastaing A. Calpastatin-modulation of m-calpain activity is required for myoblast fusion. Eur J Cell Biol. 1998 Mar;75(3):247–253. doi: 10.1016/S0171-9335(98)80120-9. [DOI] [PubMed] [Google Scholar]
- Barbacid M., Vazquez D. Ribosome changes during translation. J Mol Biol. 1975 Apr 25;93(4):449–463. doi: 10.1016/0022-2836(75)90239-9. [DOI] [PubMed] [Google Scholar]
- Barnoy S., Glaser T., Kosower N. S. Calpain and calpastatin in myoblast differentiation and fusion: effects of inhibitors. Biochim Biophys Acta. 1997 Sep 11;1358(2):181–188. doi: 10.1016/s0167-4889(97)00068-2. [DOI] [PubMed] [Google Scholar]
- Barnoy S., Glaser T., Kosower N. S. The calpain-calpastatin system and protein degradation in fusing myoblasts. Biochim Biophys Acta. 1998 Mar 12;1402(1):52–60. doi: 10.1016/s0167-4889(97)00144-4. [DOI] [PubMed] [Google Scholar]
- Barnoy S., Glasner T., Kosower N. S. The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion. Biochem Biophys Res Commun. 1996 Mar 27;220(3):933–938. doi: 10.1006/bbrc.1996.0509. [DOI] [PubMed] [Google Scholar]
- Barnoy S., Zipser Y., Glaser T., Grimberg Y., Kosower N. S. Association of calpain (Ca(2+)-dependent thiol protease) with its endogenous inhibitor calpastatin in myoblasts. J Cell Biochem. 1999 Sep 15;74(4):522–531. doi: 10.1002/(sici)1097-4644(19990915)74:4<522::aid-jcb2>3.3.co;2-9. [DOI] [PubMed] [Google Scholar]
- Bermano G., Arthur J. R., Hesketh J. E. Selective control of cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase mRNA stability by selenium supply. FEBS Lett. 1996 Jun 3;387(2-3):157–160. doi: 10.1016/0014-5793(96)00493-0. [DOI] [PubMed] [Google Scholar]
- Brennan T. J., Edmondson D. G., Li L., Olson E. N. Transforming growth factor beta represses the actions of myogenin through a mechanism independent of DNA binding. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3822–3826. doi: 10.1073/pnas.88.9.3822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993 Sep;15(3):532-4, 536-7. [PubMed] [Google Scholar]
- Cottin P., Brustis J. J., Poussard S., Elamrani N., Broncard S., Ducastaing A. Ca(2+)-dependent proteinases (calpains) and muscle cell differentiation. Biochim Biophys Acta. 1994 Sep 8;1223(2):170–178. doi: 10.1016/0167-4889(94)90223-2. [DOI] [PubMed] [Google Scholar]
- Czaplinski K., Ruiz-Echevarria M. J., González C. I., Peltz S. W. Should we kill the messenger? The role of the surveillance complex in translation termination and mRNA turnover. Bioessays. 1999 Aug;21(8):685–696. doi: 10.1002/(SICI)1521-1878(199908)21:8<685::AID-BIES8>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- De Tullio R., Sparatore B., Salamino F., Melloni E., Pontremoli S. Rat brain contains multiple mRNAs for calpastatin. FEBS Lett. 1998 Jan 23;422(1):113–117. doi: 10.1016/s0014-5793(97)01588-3. [DOI] [PubMed] [Google Scholar]
- Ebisui C., Tsujinaka T., Kido Y., Iijima S., Yano M., Shibata H., Tanaka T., Mori T. Role of intracellular proteases in differentiation of L6 myoblast cells. Biochem Mol Biol Int. 1994 Mar;32(3):515–521. [PubMed] [Google Scholar]
- Emori Y., Kawasaki H., Imajoh S., Imahori K., Suzuki K. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3590–3594. doi: 10.1073/pnas.84.11.3590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo T., Nadal-Ginard B. Three types of muscle-specific gene expression in fusion-blocked rat skeletal muscle cells: translational control in EGTA-treated cells. Cell. 1987 May 22;49(4):515–526. doi: 10.1016/0092-8674(87)90454-5. [DOI] [PubMed] [Google Scholar]
- Fulton A. B., Prives J., Farmer S. R., Penman S. Developmental reorganization of the skeletal framework and its surface lamina in fusing muscle cells. J Cell Biol. 1981 Oct;91(1):103–112. doi: 10.1083/jcb.91.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gogos J. A., Thompson R., Lowry W., Sloane B. F., Weintraub H., Horwitz M. Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion. J Cell Biol. 1996 Aug;134(4):837–847. doi: 10.1083/jcb.134.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goto K., Iwamoto T., Kondo H. Localization of mRNAs for calpain and calpastatin in the adult rat brain by in situ hybridization histochemistry. Brain Res Mol Brain Res. 1994 Apr;23(1-2):40–46. doi: 10.1016/0169-328x(94)90209-7. [DOI] [PubMed] [Google Scholar]
- Heino J., Massagué J. Cell adhesion to collagen and decreased myogenic gene expression implicated in the control of myogenesis by transforming growth factor beta. J Biol Chem. 1990 Jun 25;265(18):10181–10184. [PubMed] [Google Scholar]
- Huang J., Forsberg N. E. Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12100–12105. doi: 10.1073/pnas.95.21.12100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ilian M. A., Forsberg N. E. Gene expression of calpains and their specific endogenous inhibitor, calpastatin, in skeletal muscle of fed and fasted rabbits. Biochem J. 1992 Oct 1;287(Pt 1):163–171. doi: 10.1042/bj2870163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imajoh S., Aoki K., Ohno S., Emori Y., Kawasaki H., Sugihara H., Suzuki K. Molecular cloning of the cDNA for the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease. Biochemistry. 1988 Oct 18;27(21):8122–8128. doi: 10.1021/bi00421a022. [DOI] [PubMed] [Google Scholar]
- Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem. 1996;65:693–739. doi: 10.1146/annurev.bi.65.070196.003401. [DOI] [PubMed] [Google Scholar]
- Johnson B. J., White M. E., Hathaway M. R., Dayton W. R. Decreased steady-state insulin-like growth factor binding protein-3 (IGFBP-3) mRNA level is associated with differentiation of cultured porcine myogenic cells. J Cell Physiol. 1999 May;179(2):237–243. doi: 10.1002/(SICI)1097-4652(199905)179:2<237::AID-JCP15>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Kosower E. M., Kosower N. S., Wegman P. Membrane mobility agents. IV. The mechanism of particle-cell and cell-cell fusion. Biochim Biophys Acta. 1977 Dec 1;471(2):311–329. doi: 10.1016/0005-2736(77)90259-0. [DOI] [PubMed] [Google Scholar]
- Kosower N. S., Glaser T., Kosower E. M. Membrane-mobility agent-promoted fusion of erythrocytes: fusibility is correlated with attack by calcium-activated cytoplasmic proteases on membrane proteins. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7542–7546. doi: 10.1073/pnas.80.24.7542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwak K. B., Chung S. S., Kim O. M., Kang M. S., Ha D. B., Chung C. H. Increase in the level of m-calpain correlates with the elevated cleavage of filamin during myogenic differentiation of embryonic muscle cells. Biochim Biophys Acta. 1993 Feb 17;1175(3):243–249. doi: 10.1016/0167-4889(93)90212-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Molinari M., Carafoli E. Calpain: a cytosolic proteinase active at the membranes. J Membr Biol. 1997 Mar 1;156(1):1–8. doi: 10.1007/s002329900181. [DOI] [PubMed] [Google Scholar]
- Parr T., Bardsley R. G., Gilmour R. S., Buttery P. J. Changes in calpain and calpastatin mRNA induced by beta-adrenergic stimulation of bovine skeletal muscle. Eur J Biochem. 1992 Sep 1;208(2):333–339. doi: 10.1111/j.1432-1033.1992.tb17191.x. [DOI] [PubMed] [Google Scholar]
- Rawls A., Olson E. N. MyoD meets its maker. Cell. 1997 Apr 4;89(1):5–8. doi: 10.1016/s0092-8674(00)80175-0. [DOI] [PubMed] [Google Scholar]
- Saido T. C., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994 Aug;8(11):814–822. [PubMed] [Google Scholar]
- Salzberg S., Mandelboim M., Zalcberg M., Shainberg A. Interruption of myogenesis by transforming growth factor beta 1 or EGTA inhibits expression and activity of the myogenic-associated (2'-5') oligoadenylate synthetase and PKR. Exp Cell Res. 1995 Jul;219(1):223–232. doi: 10.1006/excr.1995.1222. [DOI] [PubMed] [Google Scholar]
- Schollmeyer J. E. Role of Ca2+ and Ca2+-activated protease in myoblast fusion. Exp Cell Res. 1986 Feb;162(2):411–422. doi: 10.1016/0014-4827(86)90346-0. [DOI] [PubMed] [Google Scholar]
- Takano E., Maki M., Mori H., Hatanaka M., Marti T., Titani K., Kannagi R., Ooi T., Murachi T. Pig heart calpastatin: identification of repetitive domain structures and anomalous behavior in polyacrylamide gel electrophoresis. Biochemistry. 1988 Mar 22;27(6):1964–1972. doi: 10.1021/bi00406a024. [DOI] [PubMed] [Google Scholar]
- Temm-Grove C. J., Wert D., Thompson V. F., Allen R. E., Goll D. E. Microinjection of calpastatin inhibits fusion in myoblasts. Exp Cell Res. 1999 Feb 25;247(1):293–303. doi: 10.1006/excr.1998.4362. [DOI] [PubMed] [Google Scholar]
- Wakelam M. J. The fusion of myoblasts. Biochem J. 1985 May 15;228(1):1–12. doi: 10.1042/bj2280001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang W., Lane R. D., Mellgren R. L. The major calpain isozymes are long-lived proteins. Design of an antisense strategy for calpain depletion in cultured cells. J Biol Chem. 1996 Aug 2;271(31):18825–18830. doi: 10.1074/jbc.271.31.18825. [DOI] [PubMed] [Google Scholar]