Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 15;351(Pt 2):439–447.

Effect of spermine synthase deficiency on polyamine biosynthesis and content in mice and embryonic fibroblasts, and the sensitivity of fibroblasts to 1,3-bis-(2-chloroethyl)-N-nitrosourea.

C A Mackintosh 1, A E Pegg 1
PMCID: PMC1221380  PMID: 11023830

Abstract

Mutant Gy male mice, which have previously been described as having disruption of the phosphate-regulating Phex gene and a spermine synthase gene [Meyer, Henley, Meyer, Morgan, McDonald, Mills and Price (1998) Genomics, 48, 289-295; Lorenz, Francis, Gempel, Böddrich, Josten, Schmahl and Schmidt (1998) Hum. Mol. Genet. 7, 541-547], as well as mutant Hyp male mice, which have disruption of the Phex gene only, were examined along with their respective normal male littermates. Biochemical analyses of extracts of brains, hearts and livers of 5-week-old mice showed that Gy males lacked any significant spermine synthase activity as well as spermine content. Organs of Gy males had a higher spermidine content. This was caused not only by the lack of conversion of spermidine into spermine, but also because of compensatory increases in the activities of other polyamine biosynthetic enzymes. Gy males were half the body weight of their normal male littermates at weaning age. Hyp males, however, were no different in size when compared with their controls. High mortality of Gy males occurs by weaning age and this mortality was shown to be largely post-natal. Embryonic fibroblasts were isolated from Gy males and their normal male littermates and were similarly shown to lack any significant spermine synthase activity as well as spermine content. The lack of spermine, however, had no significant effect on the growth of immortalized fibroblasts or of primary fibroblast cultures. Similarly, there was no difference in the time of senescence of primary fibroblast cultures from Gy males compared with cultures derived from normal male littermates. However, the lack of spermine did increase the sensitivity of immortalized fibroblasts to killing by the chloroethylating agent 1, 3-bis(2-chloroethyl)-N-nitrosourea. Therefore both the Gy male mice and derived embryonic fibroblasts provide valuable models to study the importance of spermine and spermine synthase, without the use of inhibitors which may have additional side effects.

Full Text

The Full Text of this article is available as a PDF (142.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baillon J. G., Kolb M., Mamont P. S. Inhibition of mammalian spermine synthase by N-alkylated-1,3-diaminopropane derivatives in vitro and in cultured rat hepatoma cells. Eur J Biochem. 1989 Jan 15;179(1):17–21. doi: 10.1111/j.1432-1033.1989.tb14515.x. [DOI] [PubMed] [Google Scholar]
  2. Beppu T., Shirahata A., Takahashi N., Hosoda H., Samejima K. Specific depletion of spermidine and spermine in HTC cells treated with inhibitors of aminopropyltransferases. J Biochem. 1995 Feb;117(2):339–345. doi: 10.1093/jb/117.2.339. [DOI] [PubMed] [Google Scholar]
  3. Boeddrich A., Burgtorf C., Roest Crollius H., Hennig S., Bernot A., Clark M., Reinhardt R., Lehrach H., Francis F. Analysis of the spermine synthase gene region in Fugu rubripes, Tetraodon fluviatilis, and Danio rerio. Genomics. 1999 Apr 1;57(1):164–168. doi: 10.1006/geno.1998.5732. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Coleman C. S., Pegg A. E. Assay of mammalian ornithine decarboxylase activity using [14C]ornithine. Methods Mol Biol. 1998;79:41–44. doi: 10.1385/0-89603-448-8:41. [DOI] [PubMed] [Google Scholar]
  6. Dolan M. E., Pegg A. E. O6-benzylguanine and its role in chemotherapy. Clin Cancer Res. 1997 Jun;3(6):837–847. [PubMed] [Google Scholar]
  7. Eicher E. M., Southard J. L., Scriver C. R., Glorieux F. H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4667–4671. doi: 10.1073/pnas.73.12.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grieff M., Whyte M. P., Thakker R. V., Mazzarella R. Sequence analysis of 139 kb in Xp22.1 containing spermine synthase and the 5' region of PEX. Genomics. 1997 Sep 1;44(2):227–231. doi: 10.1006/geno.1997.4876. [DOI] [PubMed] [Google Scholar]
  9. Ha H. C., Sirisoma N. S., Kuppusamy P., Zweier J. L., Woster P. M., Casero R. A., Jr The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11140–11145. doi: 10.1073/pnas.95.19.11140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamasaki-Katagiri N., Katagiri Y., Tabor C. W., Tabor H. Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant. Gene. 1998 Apr 14;210(2):195–201. doi: 10.1016/s0378-1119(98)00027-4. [DOI] [PubMed] [Google Scholar]
  11. Huber M., Poulin R. Antiproliferative effect of spermine depletion by N-cyclohexyl-1,3-diaminopropane in human breast cancer cells. Cancer Res. 1995 Feb 15;55(4):934–943. [PubMed] [Google Scholar]
  12. Kierstead T. D., Tevethia M. J. Association of p53 binding and immortalization of primary C57BL/6 mouse embryo fibroblasts by using simian virus 40 T-antigen mutants bearing internal overlapping deletion mutations. J Virol. 1993 Apr;67(4):1817–1829. doi: 10.1128/jvi.67.4.1817-1829.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Korhonen V. P., Halmekytö M., Kauppinen L., Myöhänen S., Wahlfors J., Keinänen T., Hyvönen T., Alhonen L., Eloranta T., Jänne J. Molecular cloning of a cDNA encoding human spermine synthase. DNA Cell Biol. 1995 Oct;14(10):841–847. doi: 10.1089/dna.1995.14.841. [DOI] [PubMed] [Google Scholar]
  14. Lorenz B., Francis F., Gempel K., Böddrich A., Josten M., Schmahl W., Schmidt J., Lehrach H., Meitinger T., Strom T. M. Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Hum Mol Genet. 1998 Mar;7(3):541–547. doi: 10.1093/hmg/7.3.541. [DOI] [PubMed] [Google Scholar]
  15. Lyon M. F., Scriver C. R., Baker L. R., Tenenhouse H. S., Kronick J., Mandla S. The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4899–4903. doi: 10.1073/pnas.83.13.4899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Løvaas E., Carlin G. Spermine: an anti-oxidant and anti-inflammatory agent. Free Radic Biol Med. 1991;11(5):455–461. doi: 10.1016/0891-5849(91)90061-7. [DOI] [PubMed] [Google Scholar]
  17. Marton L. J., Pegg A. E. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol. 1995;35:55–91. doi: 10.1146/annurev.pa.35.040195.000415. [DOI] [PubMed] [Google Scholar]
  18. Matkovics B., Kecskemeti V., Varga S. I., Novak Z., Kertesz Z. Antioxidant properties of di- and polyamines. Comp Biochem Physiol B. 1993 Mar;104(3):475–479. doi: 10.1016/0305-0491(93)90269-b. [DOI] [PubMed] [Google Scholar]
  19. Meyer R. A., Jr, Henley C. M., Meyer M. H., Morgan P. L., McDonald A. G., Mills C., Price D. K. Partial deletion of both the spermine synthase gene and the Pex gene in the X-linked hypophosphatemic, gyro (Gy) mouse. Genomics. 1998 Mar 15;48(3):289–295. doi: 10.1006/geno.1997.5169. [DOI] [PubMed] [Google Scholar]
  20. Meyer R. A., Jr, Meyer M. H., Gray R. W., Bruns M. E. Femoral abnormalities and vitamin D metabolism in X-linked hypophosphatemic (Hyp and Gy) mice. J Orthop Res. 1995 Jan;13(1):30–40. doi: 10.1002/jor.1100130107. [DOI] [PubMed] [Google Scholar]
  21. Mroz K., Carrel L., Hunt P. A. Germ cell development in the XXY mouse: evidence that X chromosome reactivation is independent of sexual differentiation. Dev Biol. 1999 Mar 1;207(1):229–238. doi: 10.1006/dbio.1998.9160. [DOI] [PubMed] [Google Scholar]
  22. Muscari C., Guarnieri C., Stefanelli C., Giaccari A., Caldarera C. M. Protective effect of spermine on DNA exposed to oxidative stress. Mol Cell Biochem. 1995 Mar 23;144(2):125–129. doi: 10.1007/BF00944391. [DOI] [PubMed] [Google Scholar]
  23. Nichols C. G., Lopatin A. N. Inward rectifier potassium channels. Annu Rev Physiol. 1997;59:171–191. doi: 10.1146/annurev.physiol.59.1.171. [DOI] [PubMed] [Google Scholar]
  24. Pegg A. E., Coward J. K. Effect of N-(n-butyl)-1,3-diaminopropane on polyamine metabolism, cell growth and sensitivity to chloroethylating agents. Biochem Pharmacol. 1993 Aug 17;46(4):717–724. doi: 10.1016/0006-2952(93)90559-f. [DOI] [PubMed] [Google Scholar]
  25. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  26. Pegg A. E., Poulin R., Coward J. K. Use of aminopropyltransferase inhibitors and of non-metabolizable analogs to study polyamine regulation and function. Int J Biochem Cell Biol. 1995 May;27(5):425–442. doi: 10.1016/1357-2725(95)00007-c. [DOI] [PubMed] [Google Scholar]
  27. Pegg A. E. Repair of O(6)-alkylguanine by alkyltransferases. Mutat Res. 2000 Apr;462(2-3):83–100. doi: 10.1016/s1383-5742(00)00017-x. [DOI] [PubMed] [Google Scholar]
  28. Pegg A. E., Wechter R., Poulin R., Woster P. M., Coward J. K. Effect of S-adenosyl-1,12-diamino-3-thio-9-azadodecane, a multisubstrate adduct inhibitor of spermine synthase, on polyamine metabolism in mammalian cells. Biochemistry. 1989 Oct 17;28(21):8446–8453. doi: 10.1021/bi00447a026. [DOI] [PubMed] [Google Scholar]
  29. Pegg A. E., Xiong H., Feith D. J., Shantz L. M. S-adenosylmethionine decarboxylase: structure, function and regulation by polyamines. Biochem Soc Trans. 1998 Nov;26(4):580–586. doi: 10.1042/bst0260580. [DOI] [PubMed] [Google Scholar]
  30. Persson L., Holm I., Ask A., Heby O. Curative effect of DL-2-difluoromethylornithine on mice bearing mutant L1210 leukemia cells deficient in polyamine uptake. Cancer Res. 1988 Sep 1;48(17):4807–4811. [PubMed] [Google Scholar]
  31. Peulen O., Pirlet C., Klimek M., Goffinet G., Dandrifosse G. Comparison between the natural postnatal maturation and the spermine-induced maturation of the rat intestine. Arch Physiol Biochem. 1998 Feb;106(1):46–55. doi: 10.1076/apab.106.1.46.4392. [DOI] [PubMed] [Google Scholar]
  32. Raina A., Pajula R. L., Eloranta T. A rapid assay method for spermidine and spermine synthases. Distribution of polyamine-synthesizing enzymes and methionine adenosyltransferase in rat tissues. FEBS Lett. 1976 Sep 1;67(3):252–255. doi: 10.1016/0014-5793(76)80540-6. [DOI] [PubMed] [Google Scholar]
  33. Romain N., Gesell M. S., Leroy O., Forget P., Dandrifosse G., Luk G. D. Effect of spermine administration on pancreatic maturation in unweaned rats. Comp Biochem Physiol A Mol Integr Physiol. 1998 Jun;120(2):379–384. doi: 10.1016/s1095-6433(98)10040-5. [DOI] [PubMed] [Google Scholar]
  34. Ruan H., Shantz L. M., Pegg A. E., Morris D. R. The upstream open reading frame of the mRNA encoding S-adenosylmethionine decarboxylase is a polyamine-responsive translational control element. J Biol Chem. 1996 Nov 22;271(47):29576–29582. doi: 10.1074/jbc.271.47.29576. [DOI] [PubMed] [Google Scholar]
  35. Seiler N., Delcros J. G., Moulinoux J. P. Polyamine transport in mammalian cells. An update. Int J Biochem Cell Biol. 1996 Aug;28(8):843–861. doi: 10.1016/1357-2725(96)00021-0. [DOI] [PubMed] [Google Scholar]
  36. Shantz L. M., Pegg A. E. Assay of mammalian S-adenosylmethionine decarboxylase activity. Methods Mol Biol. 1998;79:45–49. doi: 10.1385/0-89603-448-8:45. [DOI] [PubMed] [Google Scholar]
  37. Shirahata A., Morohoshi T., Samejima K. Trans-4-methylcyclohexylamine, a potent new inhibitor of spermidine synthase. Chem Pharm Bull (Tokyo) 1988 Aug;36(8):3220–3222. doi: 10.1248/cpb.36.3220. [DOI] [PubMed] [Google Scholar]
  38. Shirahata A., Takahashi N., Beppu T., Hosoda H., Samejima K. Effects of inhibitors of spermidine synthase and spermine synthase on polyamine synthesis in rat tissues. Biochem Pharmacol. 1993 May 5;45(9):1897–1903. doi: 10.1016/0006-2952(93)90449-7. [DOI] [PubMed] [Google Scholar]
  39. Stefanelli C., Bonavita F., Stanic' I., Mignani M., Facchini A., Pignatti C., Flamigni F., Caldarera C. M. Spermine causes caspase activation in leukaemia cells. FEBS Lett. 1998 Oct 23;437(3):233–236. doi: 10.1016/s0014-5793(98)01239-3. [DOI] [PubMed] [Google Scholar]
  40. Stefanelli C., Bonavita F., Stanic' I., Pignatti C., Flamigni F., Guarnieri C., Caldarera C. M. Spermine triggers the activation of caspase-3 in a cell-free model of apoptosis. FEBS Lett. 1999 May 21;451(2):95–98. doi: 10.1016/s0014-5793(99)00549-9. [DOI] [PubMed] [Google Scholar]
  41. Strom T. M., Francis F., Lorenz B., Böddrich A., Econs M. J., Lehrach H., Meitinger T. Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet. 1997 Feb;6(2):165–171. doi: 10.1093/hmg/6.2.165. [DOI] [PubMed] [Google Scholar]
  42. Tabor C. W., Tabor H. Polyamines in microorganisms. Microbiol Rev. 1985 Mar;49(1):81–99. doi: 10.1128/mr.49.1.81-99.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tang K. C., Pegg A. E., Coward J. K. Specific and potent inhibition of spermidine synthase by the transition-state analog, S-adenosyl-3-thio-1,8-diaminooctane. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1371–1377. doi: 10.1016/0006-291x(80)90102-3. [DOI] [PubMed] [Google Scholar]
  44. Wiest L., Pegg A. E. Assay of spermidine and spermine synthases. Methods Mol Biol. 1998;79:51–57. doi: 10.1385/0-89603-448-8:51. [DOI] [PubMed] [Google Scholar]
  45. Williams K. Interactions of polyamines with ion channels. Biochem J. 1997 Jul 15;325(Pt 2):289–297. doi: 10.1042/bj3250289. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES