Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 15;351(Pt 2):477–484.

The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae.

R Hassett 1, D R Dix 1, D J Eide 1, D J Kosman 1
PMCID: PMC1221384  PMID: 11023834

Abstract

The plasma-membrane of Saccharomyces cerevisiae contains high affinity permeases for Cu(I) and Fe(II). A low affinity Fe(II) permease has also been identified, designated Fet4p. A corresponding low affinity copper permease has not been characterized, although yeast cells that lack high affinity copper uptake do accumulate this metal ion. We demonstrate in the present study that Fet4p can function as a low affinity copper permease. Copper is a non-competitive inhibitor of (55)Fe uptake through Fet4p (K(i)=22 microM). Fet4p-dependent (67)Cu uptake was kinetically characterized, with K(m) and V(max) values of 35 microM and 8 pmol of copper/min per 10(6) cells respectively. A fet4-containing strain exhibited no saturable, low affinity copper uptake indicating that this uptake was attributable to Fet4p. Mutant forms of Fet4p that exhibited decreased efficiency in (55/59)Fe uptake were similarly compromised in (67)Cu uptake, indicating that similar amino acid residues in Fet4p contribute to both uptake processes. The copper taken into the cell by Fet4p was metabolized similarly to the copper taken into the cell by the high affinity permease, Ctr1p. This was shown by the Fet4p-dependence of copper activation of Fet3p, the copper oxidase that supports high affinity iron uptake in yeast. Also, copper-transported by Fet4p down-regulated the copper sensitive transcription factor, Mac1p. Whether supplied by Ctr1p or by Fet4p, an intracellular copper concentration of approx. 10 microM caused a 50% reduction in the transcriptional activity of Mac1p. The data suggest that the initial trafficking of newly arrived copper in the yeast cell is independent of the copper uptake pathway involved, and that this copper may be targeted first to a presumably small 'holding' pool prior to its partitioning within the cell.

Full Text

The Full Text of this article is available as a PDF (165.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen X. Z., Peng J. B., Cohen A., Nelson H., Nelson N., Hediger M. A. Yeast SMF1 mediates H(+)-coupled iron uptake with concomitant uncoupled cation currents. J Biol Chem. 1999 Dec 3;274(49):35089–35094. doi: 10.1074/jbc.274.49.35089. [DOI] [PubMed] [Google Scholar]
  2. Dancis A. Genetic analysis of iron uptake in the yeast Saccharomyces cerevisiae. J Pediatr. 1998 Mar;132(3 Pt 2):S24–S29. doi: 10.1016/s0022-3476(98)70524-4. [DOI] [PubMed] [Google Scholar]
  3. Dancis A., Haile D., Yuan D. S., Klausner R. D. The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem. 1994 Oct 14;269(41):25660–25667. [PubMed] [Google Scholar]
  4. Dancis A., Roman D. G., Anderson G. J., Hinnebusch A. G., Klausner R. D. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3869–3873. doi: 10.1073/pnas.89.9.3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., Kaplan J., Klausner R. D. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell. 1994 Jan 28;76(2):393–402. doi: 10.1016/0092-8674(94)90345-x. [DOI] [PubMed] [Google Scholar]
  6. De Silva D. M., Askwith C. C., Eide D., Kaplan J. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem. 1995 Jan 20;270(3):1098–1101. doi: 10.1074/jbc.270.3.1098. [DOI] [PubMed] [Google Scholar]
  7. Dix D. R., Bridgham J. T., Broderius M. A., Byersdorfer C. A., Eide D. J. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem. 1994 Oct 21;269(42):26092–26099. [PubMed] [Google Scholar]
  8. Dix D., Bridgham J., Broderius M., Eide D. Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron. J Biol Chem. 1997 May 2;272(18):11770–11777. doi: 10.1074/jbc.272.18.11770. [DOI] [PubMed] [Google Scholar]
  9. Eide D. J. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr. 1998;18:441–469. doi: 10.1146/annurev.nutr.18.1.441. [DOI] [PubMed] [Google Scholar]
  10. Eide D., Davis-Kaplan S., Jordan I., Sipe D., Kaplan J. Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. J Biol Chem. 1992 Oct 15;267(29):20774–20781. [PubMed] [Google Scholar]
  11. Georgatsou E., Mavrogiannis L. A., Fragiadakis G. S., Alexandraki D. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem. 1997 May 23;272(21):13786–13792. doi: 10.1074/jbc.272.21.13786. [DOI] [PubMed] [Google Scholar]
  12. Hamer D. H. Metallothionein. Annu Rev Biochem. 1986;55:913–951. doi: 10.1146/annurev.bi.55.070186.004405. [DOI] [PubMed] [Google Scholar]
  13. Hassett R. F., Yuan D. S., Kosman D. J. Spectral and kinetic properties of the Fet3 protein from Saccharomyces cerevisiae, a multinuclear copper ferroxidase enzyme. J Biol Chem. 1998 Sep 4;273(36):23274–23282. doi: 10.1074/jbc.273.36.23274. [DOI] [PubMed] [Google Scholar]
  14. Hassett R., Kosman D. J. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem. 1995 Jan 6;270(1):128–134. doi: 10.1074/jbc.270.1.128. [DOI] [PubMed] [Google Scholar]
  15. Jungmann J., Reins H. A., Lee J., Romeo A., Hassett R., Kosman D., Jentsch S. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 1993 Dec 15;12(13):5051–5056. doi: 10.1002/j.1460-2075.1993.tb06198.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knight S. A., Labbé S., Kwon L. F., Kosman D. J., Thiele D. J. A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev. 1996 Aug 1;10(15):1917–1929. doi: 10.1101/gad.10.15.1917. [DOI] [PubMed] [Google Scholar]
  17. Lin C. M., Crawford B. F., Kosman D. J. Distribution of 64Cu in Saccharomyces cerevisiae: cellular locale and metabolism. J Gen Microbiol. 1993 Jul;139(7):1605–1615. doi: 10.1099/00221287-139-7-1605. [DOI] [PubMed] [Google Scholar]
  18. Lin C. M., Kosman D. J. Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae. Kinetics and mechanism. J Biol Chem. 1990 Jun 5;265(16):9194–9200. [PubMed] [Google Scholar]
  19. Lin S. J., Pufahl R. A., Dancis A., O'Halloran T. V., Culotta V. C. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem. 1997 Apr 4;272(14):9215–9220. [PubMed] [Google Scholar]
  20. Liu X. F., Culotta V. C. The requirement for yeast superoxide dismutase is bypassed through mutations in BSD2, a novel metal homeostasis gene. Mol Cell Biol. 1994 Nov;14(11):7037–7045. doi: 10.1128/mcb.14.11.7037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu X. F., Supek F., Nelson N., Culotta V. C. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem. 1997 May 2;272(18):11763–11769. doi: 10.1074/jbc.272.18.11763. [DOI] [PubMed] [Google Scholar]
  22. Nelson N. Metal ion transporters and homeostasis. EMBO J. 1999 Aug 16;18(16):4361–4371. doi: 10.1093/emboj/18.16.4361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Portnoy M. E., Rosenzweig A. C., Rae T., Huffman D. L., O'Halloran T. V., Culotta V. C. Structure-function analyses of the ATX1 metallochaperone. J Biol Chem. 1999 May 21;274(21):15041–15045. doi: 10.1074/jbc.274.21.15041. [DOI] [PubMed] [Google Scholar]
  24. Pufahl R. A., Singer C. P., Peariso K. L., Lin S. J., Schmidt P. J., Fahrni C. J., Culotta V. C., Penner-Hahn J. E., O'Halloran T. V. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science. 1997 Oct 31;278(5339):853–856. doi: 10.1126/science.278.5339.853. [DOI] [PubMed] [Google Scholar]
  25. Rae T. D., Schmidt P. J., Pufahl R. A., Culotta V. C., O'Halloran T. V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science. 1999 Apr 30;284(5415):805–808. doi: 10.1126/science.284.5415.805. [DOI] [PubMed] [Google Scholar]
  26. Schosinsky K. H., Lehmann H. P., Beeler M. F. Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin Chem. 1974 Dec;20(12):1556–1563. [PubMed] [Google Scholar]
  27. Serpe M., Joshi A., Kosman D. J. Structure-function analysis of the protein-binding domains of Mac1p, a copper-dependent transcriptional activator of copper uptake in Saccharomyces cerevisiae. J Biol Chem. 1999 Oct 8;274(41):29211–29219. doi: 10.1074/jbc.274.41.29211. [DOI] [PubMed] [Google Scholar]
  28. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996 Mar 15;271(5255):1552–1557. doi: 10.1126/science.271.5255.1552. [DOI] [PubMed] [Google Scholar]
  29. Yamaguchi-Iwai Y., Serpe M., Haile D., Yang W., Kosman D. J., Klausner R. D., Dancis A. Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem. 1997 Jul 11;272(28):17711–17718. doi: 10.1074/jbc.272.28.17711. [DOI] [PubMed] [Google Scholar]
  30. Yamaguchi-Iwai Y., Stearman R., Dancis A., Klausner R. D. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J. 1996 Jul 1;15(13):3377–3384. [PMC free article] [PubMed] [Google Scholar]
  31. Yuan D. S., Dancis A., Klausner R. D. Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem. 1997 Oct 10;272(41):25787–25793. doi: 10.1074/jbc.272.41.25787. [DOI] [PubMed] [Google Scholar]
  32. Yuan D. S., Stearman R., Dancis A., Dunn T., Beeler T., Klausner R. D. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2632–2636. doi: 10.1073/pnas.92.7.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES