Abstract
Nitric oxide has been implicated in the inhibition of catecholamine-stimulated lipolysis in adipose tissue by as yet unknown mechanisms. In the present study, it is shown that the nitric oxide donor, 2,2-diethyl-1-nitroso-oxyhydrazine, antagonized isoproterenol (isoprenaline)-induced lipolysis in rat adipocytes, freshly isolated from white adipose tissue, by decreasing the potency of the beta-agonist without affecting its efficacy. These data suggest that nitric oxide did not act downstream of the beta-adrenoceptor but reduced the effective concentration of isoproterenol. In support of the latter hypothesis, we found that pre-treatment of isoproterenol with nitric oxide abolished the lipolytic activity of the catecholamine. Spectroscopic data and HPLC analysis confirmed that the nitric oxide-mediated inactivation of isoproterenol was in fact because of the modification of the catecholamine through a sequence of oxidation reactions, which apparently involved the generation of an aminochrome. Similarly, aminochrome was found to be the primary product of isoproterenol oxidation by 3-morpholinosydnonimine and peroxynitrite. Finally, it was shown that nitric oxide released from cytokine-stimulated adipocytes attenuated the lipolytic effect of isoproterenol by inactivating the catecholamine. In contrast with very recent findings, which suggest that nitric oxide impairs the beta-adrenergic action of isoproterenol through intracellular mechanisms and not through a chemical reaction between NO and the catecholamine, we showed that nitric oxide was able to attenuate the pharmacological activity of isoproterenol in vitro as well as in a nitric oxide-generating cellular system through oxidation of the beta-agonist. These findings should be taken into account in both the design and interpretation of studies used to investigate the role of nitric oxide as a modulator of isoproterenol-stimulated signal transduction pathways.
Full Text
The Full Text of this article is available as a PDF (173.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam L., Bouvier M., Jones T. L. Nitric oxide modulates beta(2)-adrenergic receptor palmitoylation and signaling. J Biol Chem. 1999 Sep 10;274(37):26337–26343. doi: 10.1074/jbc.274.37.26337. [DOI] [PubMed] [Google Scholar]
- Andersson K., Gaudiot N., Ribiere C., Elizalde M., Giudicelli Y., Arner P. A nitric oxide-mediated mechanism regulates lipolysis in human adipose tissue in vivo. Br J Pharmacol. 1999 Apr;126(7):1639–1645. doi: 10.1038/sj.bjp.0702430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beavo J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995 Oct;75(4):725–748. doi: 10.1152/physrev.1995.75.4.725. [DOI] [PubMed] [Google Scholar]
- Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benkusky N. A., Lewis S. J., Kooy N. W. Peroxynitrite-mediated attenuation of alpha- and beta-adrenoceptor agonist-induced vascular responses in vivo. Eur J Pharmacol. 1999 Jan 8;364(2-3):151–158. doi: 10.1016/s0014-2999(98)00791-2. [DOI] [PubMed] [Google Scholar]
- Biel M., Zong X., Hofmann F. Cyclic nucleotide gated channels. Adv Second Messenger Phosphoprotein Res. 1999;33:231–250. doi: 10.1016/s1040-7952(99)80012-3. [DOI] [PubMed] [Google Scholar]
- DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
- Daveu C., Servy C., Dendane M., Marin P., Ducrocq C. Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide. Nitric Oxide. 1997 Jun;1(3):234–243. doi: 10.1006/niox.1997.0123. [DOI] [PubMed] [Google Scholar]
- DeMaster E. G., Quast B. J., Redfern B., Nagasawa H. T. Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide. Biochemistry. 1995 Sep 12;34(36):11494–11499. doi: 10.1021/bi00036a023. [DOI] [PubMed] [Google Scholar]
- Denninger J. W., Marletta M. A. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta. 1999 May 5;1411(2-3):334–350. doi: 10.1016/s0005-2728(99)00024-9. [DOI] [PubMed] [Google Scholar]
- Ebihara Y., Karmazyn M. Inhibition of beta- but not alpha 1-mediated adrenergic responses in isolated hearts and cardiomyocytes by nitric oxide and 8-bromo cyclic GMP. Cardiovasc Res. 1996 Sep;32(3):622–629. [PubMed] [Google Scholar]
- Furchgott R. F. A research trail over half a century. Annu Rev Pharmacol Toxicol. 1995;35:1–27. doi: 10.1146/annurev.pa.35.040195.000245. [DOI] [PubMed] [Google Scholar]
- Garthwaite J., Southam E., Boulton C. L., Nielsen E. B., Schmidt K., Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol. 1995 Aug;48(2):184–188. [PubMed] [Google Scholar]
- Gaudiot N., Jaubert A. M., Charbonnier E., Sabourault D., Lacasa D., Giudicelli Y., Ribière C. Modulation of white adipose tissue lipolysis by nitric oxide. J Biol Chem. 1998 May 29;273(22):13475–13481. doi: 10.1074/jbc.273.22.13475. [DOI] [PubMed] [Google Scholar]
- Graham D. G., Jeffs P. W. The role of 2,4,5-trihydroxyphenylalanine in melanin biosynthesis. J Biol Chem. 1977 Aug 25;252(16):5729–5734. [PubMed] [Google Scholar]
- Kalyanaraman B., Felix C. C., Sealy R. C. Electron spin resonance-spin stabilization of semiquinones produced during oxidation of epinephrine and its analogues. J Biol Chem. 1984 Jan 10;259(1):354–358. [PubMed] [Google Scholar]
- Kapur S., Marcotte B., Marette A. Mechanism of adipose tissue iNOS induction in endotoxemia. Am J Physiol. 1999 Apr;276(4 Pt 1):E635–E641. doi: 10.1152/ajpendo.1999.276.4.E635. [DOI] [PubMed] [Google Scholar]
- Lafontan M., Berlan M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res. 1993 Jul;34(7):1057–1091. [PubMed] [Google Scholar]
- MacMicking J., Xie Q. W., Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–350. doi: 10.1146/annurev.immunol.15.1.323. [DOI] [PubMed] [Google Scholar]
- Moro M. A., Darley-Usmar V. M., Lizasoain I., Su Y., Knowles R. G., Radomski M. W., Moncada S. The formation of nitric oxide donors from peroxynitrite. Br J Pharmacol. 1995 Oct;116(3):1999–2004. doi: 10.1111/j.1476-5381.1995.tb16404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Núez-Delicado E., Pérez-Gilabert M., Sánchez-Ferrer A., García-Carmona F. Hydroperoxidase activity of lipoxygenase: a kinetic study of isoproterenol oxidation. Biochim Biophys Acta. 1996 Mar 7;1293(1):17–22. doi: 10.1016/0167-4838(95)00226-x. [DOI] [PubMed] [Google Scholar]
- Pfeifer A., Ruth P., Dostmann W., Sausbier M., Klatt P., Hofmann F. Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol. 1999;135:105–149. doi: 10.1007/BFb0033671. [DOI] [PubMed] [Google Scholar]
- Pfeiffer S., Mayer B. Lack of tyrosine nitration by peroxynitrite generated at physiological pH. J Biol Chem. 1998 Oct 16;273(42):27280–27285. doi: 10.1074/jbc.273.42.27280. [DOI] [PubMed] [Google Scholar]
- RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
- Ribiere C., Jaubert A. M., Gaudiot N., Sabourault D., Marcus M. L., Boucher J. L., Denis-Henriot D., Giudicelli Y. White adipose tissue nitric oxide synthase: a potential source for NO production. Biochem Biophys Res Commun. 1996 May 24;222(3):706–712. doi: 10.1006/bbrc.1996.0824. [DOI] [PubMed] [Google Scholar]
- Rozanski G. J., Witt R. C. IL-1 inhibits beta-adrenergic control of cardiac calcium current: role of L-arginine/nitric oxide pathway. Am J Physiol. 1994 Nov;267(5 Pt 2):H1753–H1758. doi: 10.1152/ajpheart.1994.267.5.H1753. [DOI] [PubMed] [Google Scholar]
- Schmidt K., Desch W., Klatt P., Kukovetz W. R., Mayer B. Release of nitric oxide from donors with known half-life: a mathematical model for calculating nitric oxide concentrations in aerobic solutions. Naunyn Schmiedebergs Arch Pharmacol. 1997 Apr;355(4):457–462. doi: 10.1007/pl00004969. [DOI] [PubMed] [Google Scholar]
- Schuman E. M., Madison D. V. Nitric oxide and synaptic function. Annu Rev Neurosci. 1994;17:153–183. doi: 10.1146/annurev.ne.17.030194.001101. [DOI] [PubMed] [Google Scholar]
- Singh R. J., Hogg N., Joseph J., Konorev E., Kalyanaraman B. The peroxynitrite generator, SIN-1, becomes a nitric oxide donor in the presence of electron acceptors. Arch Biochem Biophys. 1999 Jan 15;361(2):331–339. doi: 10.1006/abbi.1998.1007. [DOI] [PubMed] [Google Scholar]
- Stamler J. S., Hausladen A. Oxidative modifications in nitrosative stress. Nat Struct Biol. 1998 Apr;5(4):247–249. doi: 10.1038/nsb0498-247. [DOI] [PubMed] [Google Scholar]
- Stuehr D. J. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999 May 5;1411(2-3):217–230. doi: 10.1016/s0005-2728(99)00016-x. [DOI] [PubMed] [Google Scholar]
- Tien M., Berlett B. S., Levine R. L., Chock P. B., Stadtman E. R. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7809–7814. doi: 10.1073/pnas.96.14.7809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wink D. A., Mitchell J. B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998 Sep;25(4-5):434–456. doi: 10.1016/s0891-5849(98)00092-6. [DOI] [PubMed] [Google Scholar]