Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 15;351(Pt 2):485–493.

Nitric oxide inhibits isoproterenol-stimulated adipocyte lipolysis through oxidative inactivation of the beta-agonist.

P Klatt 1, J Cacho 1, M D Crespo 1, E Herrera 1, P Ramos 1
PMCID: PMC1221385  PMID: 11023835

Abstract

Nitric oxide has been implicated in the inhibition of catecholamine-stimulated lipolysis in adipose tissue by as yet unknown mechanisms. In the present study, it is shown that the nitric oxide donor, 2,2-diethyl-1-nitroso-oxyhydrazine, antagonized isoproterenol (isoprenaline)-induced lipolysis in rat adipocytes, freshly isolated from white adipose tissue, by decreasing the potency of the beta-agonist without affecting its efficacy. These data suggest that nitric oxide did not act downstream of the beta-adrenoceptor but reduced the effective concentration of isoproterenol. In support of the latter hypothesis, we found that pre-treatment of isoproterenol with nitric oxide abolished the lipolytic activity of the catecholamine. Spectroscopic data and HPLC analysis confirmed that the nitric oxide-mediated inactivation of isoproterenol was in fact because of the modification of the catecholamine through a sequence of oxidation reactions, which apparently involved the generation of an aminochrome. Similarly, aminochrome was found to be the primary product of isoproterenol oxidation by 3-morpholinosydnonimine and peroxynitrite. Finally, it was shown that nitric oxide released from cytokine-stimulated adipocytes attenuated the lipolytic effect of isoproterenol by inactivating the catecholamine. In contrast with very recent findings, which suggest that nitric oxide impairs the beta-adrenergic action of isoproterenol through intracellular mechanisms and not through a chemical reaction between NO and the catecholamine, we showed that nitric oxide was able to attenuate the pharmacological activity of isoproterenol in vitro as well as in a nitric oxide-generating cellular system through oxidation of the beta-agonist. These findings should be taken into account in both the design and interpretation of studies used to investigate the role of nitric oxide as a modulator of isoproterenol-stimulated signal transduction pathways.

Full Text

The Full Text of this article is available as a PDF (173.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam L., Bouvier M., Jones T. L. Nitric oxide modulates beta(2)-adrenergic receptor palmitoylation and signaling. J Biol Chem. 1999 Sep 10;274(37):26337–26343. doi: 10.1074/jbc.274.37.26337. [DOI] [PubMed] [Google Scholar]
  2. Andersson K., Gaudiot N., Ribiere C., Elizalde M., Giudicelli Y., Arner P. A nitric oxide-mediated mechanism regulates lipolysis in human adipose tissue in vivo. Br J Pharmacol. 1999 Apr;126(7):1639–1645. doi: 10.1038/sj.bjp.0702430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beavo J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995 Oct;75(4):725–748. doi: 10.1152/physrev.1995.75.4.725. [DOI] [PubMed] [Google Scholar]
  4. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benkusky N. A., Lewis S. J., Kooy N. W. Peroxynitrite-mediated attenuation of alpha- and beta-adrenoceptor agonist-induced vascular responses in vivo. Eur J Pharmacol. 1999 Jan 8;364(2-3):151–158. doi: 10.1016/s0014-2999(98)00791-2. [DOI] [PubMed] [Google Scholar]
  6. Biel M., Zong X., Hofmann F. Cyclic nucleotide gated channels. Adv Second Messenger Phosphoprotein Res. 1999;33:231–250. doi: 10.1016/s1040-7952(99)80012-3. [DOI] [PubMed] [Google Scholar]
  7. DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
  8. Daveu C., Servy C., Dendane M., Marin P., Ducrocq C. Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide. Nitric Oxide. 1997 Jun;1(3):234–243. doi: 10.1006/niox.1997.0123. [DOI] [PubMed] [Google Scholar]
  9. DeMaster E. G., Quast B. J., Redfern B., Nagasawa H. T. Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide. Biochemistry. 1995 Sep 12;34(36):11494–11499. doi: 10.1021/bi00036a023. [DOI] [PubMed] [Google Scholar]
  10. Denninger J. W., Marletta M. A. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta. 1999 May 5;1411(2-3):334–350. doi: 10.1016/s0005-2728(99)00024-9. [DOI] [PubMed] [Google Scholar]
  11. Ebihara Y., Karmazyn M. Inhibition of beta- but not alpha 1-mediated adrenergic responses in isolated hearts and cardiomyocytes by nitric oxide and 8-bromo cyclic GMP. Cardiovasc Res. 1996 Sep;32(3):622–629. [PubMed] [Google Scholar]
  12. Furchgott R. F. A research trail over half a century. Annu Rev Pharmacol Toxicol. 1995;35:1–27. doi: 10.1146/annurev.pa.35.040195.000245. [DOI] [PubMed] [Google Scholar]
  13. Garthwaite J., Southam E., Boulton C. L., Nielsen E. B., Schmidt K., Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol. 1995 Aug;48(2):184–188. [PubMed] [Google Scholar]
  14. Gaudiot N., Jaubert A. M., Charbonnier E., Sabourault D., Lacasa D., Giudicelli Y., Ribière C. Modulation of white adipose tissue lipolysis by nitric oxide. J Biol Chem. 1998 May 29;273(22):13475–13481. doi: 10.1074/jbc.273.22.13475. [DOI] [PubMed] [Google Scholar]
  15. Graham D. G., Jeffs P. W. The role of 2,4,5-trihydroxyphenylalanine in melanin biosynthesis. J Biol Chem. 1977 Aug 25;252(16):5729–5734. [PubMed] [Google Scholar]
  16. Kalyanaraman B., Felix C. C., Sealy R. C. Electron spin resonance-spin stabilization of semiquinones produced during oxidation of epinephrine and its analogues. J Biol Chem. 1984 Jan 10;259(1):354–358. [PubMed] [Google Scholar]
  17. Kapur S., Marcotte B., Marette A. Mechanism of adipose tissue iNOS induction in endotoxemia. Am J Physiol. 1999 Apr;276(4 Pt 1):E635–E641. doi: 10.1152/ajpendo.1999.276.4.E635. [DOI] [PubMed] [Google Scholar]
  18. Lafontan M., Berlan M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res. 1993 Jul;34(7):1057–1091. [PubMed] [Google Scholar]
  19. MacMicking J., Xie Q. W., Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–350. doi: 10.1146/annurev.immunol.15.1.323. [DOI] [PubMed] [Google Scholar]
  20. Moro M. A., Darley-Usmar V. M., Lizasoain I., Su Y., Knowles R. G., Radomski M. W., Moncada S. The formation of nitric oxide donors from peroxynitrite. Br J Pharmacol. 1995 Oct;116(3):1999–2004. doi: 10.1111/j.1476-5381.1995.tb16404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Núez-Delicado E., Pérez-Gilabert M., Sánchez-Ferrer A., García-Carmona F. Hydroperoxidase activity of lipoxygenase: a kinetic study of isoproterenol oxidation. Biochim Biophys Acta. 1996 Mar 7;1293(1):17–22. doi: 10.1016/0167-4838(95)00226-x. [DOI] [PubMed] [Google Scholar]
  22. Pfeifer A., Ruth P., Dostmann W., Sausbier M., Klatt P., Hofmann F. Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol. 1999;135:105–149. doi: 10.1007/BFb0033671. [DOI] [PubMed] [Google Scholar]
  23. Pfeiffer S., Mayer B. Lack of tyrosine nitration by peroxynitrite generated at physiological pH. J Biol Chem. 1998 Oct 16;273(42):27280–27285. doi: 10.1074/jbc.273.42.27280. [DOI] [PubMed] [Google Scholar]
  24. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  25. Ribiere C., Jaubert A. M., Gaudiot N., Sabourault D., Marcus M. L., Boucher J. L., Denis-Henriot D., Giudicelli Y. White adipose tissue nitric oxide synthase: a potential source for NO production. Biochem Biophys Res Commun. 1996 May 24;222(3):706–712. doi: 10.1006/bbrc.1996.0824. [DOI] [PubMed] [Google Scholar]
  26. Rozanski G. J., Witt R. C. IL-1 inhibits beta-adrenergic control of cardiac calcium current: role of L-arginine/nitric oxide pathway. Am J Physiol. 1994 Nov;267(5 Pt 2):H1753–H1758. doi: 10.1152/ajpheart.1994.267.5.H1753. [DOI] [PubMed] [Google Scholar]
  27. Schmidt K., Desch W., Klatt P., Kukovetz W. R., Mayer B. Release of nitric oxide from donors with known half-life: a mathematical model for calculating nitric oxide concentrations in aerobic solutions. Naunyn Schmiedebergs Arch Pharmacol. 1997 Apr;355(4):457–462. doi: 10.1007/pl00004969. [DOI] [PubMed] [Google Scholar]
  28. Schuman E. M., Madison D. V. Nitric oxide and synaptic function. Annu Rev Neurosci. 1994;17:153–183. doi: 10.1146/annurev.ne.17.030194.001101. [DOI] [PubMed] [Google Scholar]
  29. Singh R. J., Hogg N., Joseph J., Konorev E., Kalyanaraman B. The peroxynitrite generator, SIN-1, becomes a nitric oxide donor in the presence of electron acceptors. Arch Biochem Biophys. 1999 Jan 15;361(2):331–339. doi: 10.1006/abbi.1998.1007. [DOI] [PubMed] [Google Scholar]
  30. Stamler J. S., Hausladen A. Oxidative modifications in nitrosative stress. Nat Struct Biol. 1998 Apr;5(4):247–249. doi: 10.1038/nsb0498-247. [DOI] [PubMed] [Google Scholar]
  31. Stuehr D. J. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999 May 5;1411(2-3):217–230. doi: 10.1016/s0005-2728(99)00016-x. [DOI] [PubMed] [Google Scholar]
  32. Tien M., Berlett B. S., Levine R. L., Chock P. B., Stadtman E. R. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7809–7814. doi: 10.1073/pnas.96.14.7809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wink D. A., Mitchell J. B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998 Sep;25(4-5):434–456. doi: 10.1016/s0891-5849(98)00092-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES