Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 15;351(Pt 2):509–516.

Purified recombinant insulin-degrading enzyme degrades amyloid beta-protein but does not promote its oligomerization.

V Chesneau 1, K Vekrellis 1, M R Rosner 1, D J Selkoe 1
PMCID: PMC1221388  PMID: 11023838

Abstract

Amyloid beta-protein (Abeta) has been implicated as an early and essential factor in the pathogenesis of Alzheimer's disease. Although its cellular production has been studied extensively, little is known about Abeta clearance. Recently, insulin-degrading enzyme (IDE), a 110-kDa metalloendopeptidase, was found to degrade both endogenously secreted and synthetic Abeta peptides. Surprisingly, IDE-mediated proteolysis of [(125)I]Abeta(1-40) in microglial cell-culture media was accompanied by the formation of (125)I-labelled peptides with higher apparent molecular masses, raising the possibility that the degradation products act as 'seeds' for Abeta oligomerization. To directly address the role of IDE in Abeta degradation and oligomerization, we investigated the action of purified recombinant wild-type and catalytically inactive IDEs. Our data demonstrate that (i) IDE alone is sufficient to cleave purified Abeta that is either unlabelled, iodinated or (35)S-labelled; (ii) the initial cleavage sites are His(14)-Gln(15), Phe(19)-Phe(20) and Phe(20)-Ala(21); and (iii) incubation of IDE with [(125)I]Abeta, but not with [(35)S]-Abeta, leads to the formation of slower migrating species on gels. Since iodination labels N-terminal fragments of Abeta, and (35)S labels C-terminal products, we analysed unlabelled synthetic fragments of Abeta and determined that only the N-terminal fragments migrate with anomalously high molecular mass. These results indicate that IDE alone is sufficient to degrade Abeta at specific sites, and that its degradation products do not promote oligomerization of the intact Abeta peptide.

Full Text

The Full Text of this article is available as a PDF (227.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affholter J. A., Fried V. A., Roth R. A. Human insulin-degrading enzyme shares structural and functional homologies with E. coli protease III. Science. 1988 Dec 9;242(4884):1415–1418. doi: 10.1126/science.3059494. [DOI] [PubMed] [Google Scholar]
  2. Affholter J. A., Hsieh C. L., Francke U., Roth R. A. Insulin-degrading enzyme: stable expression of the human complementary DNA, characterization of its protein product, and chromosomal mapping of the human and mouse genes. Mol Endocrinol. 1990 Aug;4(8):1125–1135. doi: 10.1210/mend-4-8-1125. [DOI] [PubMed] [Google Scholar]
  3. Authier F., Cameron P. H., Taupin V. Association of insulin-degrading enzyme with a 70 kDa cytosolic protein in hepatoma cells. Biochem J. 1996 Oct 1;319(Pt 1):149–158. doi: 10.1042/bj3190149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baumeister H., Müller D., Rehbein M., Richter D. The rat insulin-degrading enzyme. Molecular cloning and characterization of tissue-specific transcripts. FEBS Lett. 1993 Feb 15;317(3):250–254. doi: 10.1016/0014-5793(93)81286-9. [DOI] [PubMed] [Google Scholar]
  5. Bennett R. G., Hamel F. G., Duckworth W. C. Identification and isolation of a cytosolic proteolytic complex containing insulin degrading enzyme and the multicatalytic proteinase. Biochem Biophys Res Commun. 1994 Jul 29;202(2):1047–1053. doi: 10.1006/bbrc.1994.2034. [DOI] [PubMed] [Google Scholar]
  6. Chesneau V., Perlman R. K., Li W., Keller G. A., Rosner M. R. Insulin-degrading enzyme does not require peroxisomal localization for insulin degradation. Endocrinology. 1997 Aug;138(8):3444–3451. doi: 10.1210/endo.138.8.5344. [DOI] [PubMed] [Google Scholar]
  7. Chesneau V., Rosner M. R. Functional human insulin-degrading enzyme can be expressed in bacteria. Protein Expr Purif. 2000 Jun;19(1):91–98. doi: 10.1006/prep.2000.1217. [DOI] [PubMed] [Google Scholar]
  8. Duckworth W. C., Bennett R. G., Hamel F. G. Insulin degradation: progress and potential. Endocr Rev. 1998 Oct;19(5):608–624. doi: 10.1210/edrv.19.5.0349. [DOI] [PubMed] [Google Scholar]
  9. Duckworth W. C., Hamel F. G., Peavy D. E., Liepnieks J. J., Ryan M. P., Hermodson M. A., Frank B. H. Degradation products of insulin generated by hepatocytes and by insulin protease. J Biol Chem. 1988 Feb 5;263(4):1826–1833. [PubMed] [Google Scholar]
  10. Garcia J. V., Gehm B. D., Rosner M. R. An evolutionarily conserved enzyme degrades transforming growth factor-alpha as well as insulin. J Cell Biol. 1989 Sep;109(3):1301–1307. doi: 10.1083/jcb.109.3.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gehm B. D., Rosner M. R. Regulation of insulin, epidermal growth factor, and transforming growth factor-alpha levels by growth factor-degrading enzymes. Endocrinology. 1991 Mar;128(3):1603–1610. doi: 10.1210/endo-128-3-1603. [DOI] [PubMed] [Google Scholar]
  12. Gould S. J., Keller G. A., Subramani S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol. 1988 Sep;107(3):897–905. doi: 10.1083/jcb.107.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamel F. G., Posner B. I., Bergeron J. J., Frank B. H., Duckworth W. C. Isolation of insulin degradation products from endosomes derived from intact rat liver. J Biol Chem. 1988 May 15;263(14):6703–6708. [PubMed] [Google Scholar]
  14. Hari J., Shii K., Roth R. A. In vivo association of [125I]-insulin with a cytosolic insulin-degrading enzyme: detection by covalent cross-linking and immunoprecipitation with a monoclonal antibody. Endocrinology. 1987 Feb;120(2):829–831. doi: 10.1210/endo-120-2-829. [DOI] [PubMed] [Google Scholar]
  15. Iwata N., Tsubuki S., Takaki Y., Watanabe K., Sekiguchi M., Hosoki E., Kawashima-Morishima M., Lee H. J., Hama E., Sekine-Aizawa Y. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med. 2000 Feb;6(2):143–150. doi: 10.1038/72237. [DOI] [PubMed] [Google Scholar]
  16. Kayalar C., Wong W. T. Metalloendoprotease inhibitors which block the differentiation of L6 myoblasts inhibit insulin degradation by the endogenous insulin-degrading enzyme. J Biol Chem. 1989 May 25;264(15):8928–8934. [PubMed] [Google Scholar]
  17. Kuo W. L., Gehm B. D., Rosner M. R. Cloning and expression of the cDNA for a Drosophila insulin-degrading enzyme. Mol Endocrinol. 1990 Oct;4(10):1580–1591. doi: 10.1210/mend-4-10-1580. [DOI] [PubMed] [Google Scholar]
  18. Kuo W. L., Gehm B. D., Rosner M. R., Li W., Keller G. Inducible expression and cellular localization of insulin-degrading enzyme in a stably transfected cell line. J Biol Chem. 1994 Sep 9;269(36):22599–22606. [PubMed] [Google Scholar]
  19. Kuo W. L., Gehm B. D., Rosner M. R. Regulation of insulin degradation: expression of an evolutionarily conserved insulin-degrading enzyme increases degradation via an intracellular pathway. Mol Endocrinol. 1991 Oct;5(10):1467–1476. doi: 10.1210/mend-5-10-1467. [DOI] [PubMed] [Google Scholar]
  20. Kuo W. L., Montag A. G., Rosner M. R. Insulin-degrading enzyme is differentially expressed and developmentally regulated in various rat tissues. Endocrinology. 1993 Feb;132(2):604–611. doi: 10.1210/endo.132.2.7678795. [DOI] [PubMed] [Google Scholar]
  21. Kurochkin I. V., Goto S. Alzheimer's beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett. 1994 May 23;345(1):33–37. doi: 10.1016/0014-5793(94)00387-4. [DOI] [PubMed] [Google Scholar]
  22. McDermott J. R., Gibson A. M. Degradation of Alzheimer's beta-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem Res. 1997 Jan;22(1):49–56. doi: 10.1023/a:1027325304203. [DOI] [PubMed] [Google Scholar]
  23. Mentlein R., Ludwig R., Martensen I. Proteolytic degradation of Alzheimer's disease amyloid beta-peptide by a metalloproteinase from microglia cells. J Neurochem. 1998 Feb;70(2):721–726. doi: 10.1046/j.1471-4159.1998.70020721.x. [DOI] [PubMed] [Google Scholar]
  24. Mills J., Reiner P. B. Regulation of amyloid precursor protein cleavage. J Neurochem. 1999 Feb;72(2):443–460. doi: 10.1046/j.1471-4159.1999.0720443.x. [DOI] [PubMed] [Google Scholar]
  25. Müller D., Baumeister H., Buck F., Richter D. Atrial natriuretic peptide (ANP) is a high-affinity substrate for rat insulin-degrading enzyme. Eur J Biochem. 1991 Dec 5;202(2):285–292. doi: 10.1111/j.1432-1033.1991.tb16374.x. [DOI] [PubMed] [Google Scholar]
  26. Müller D., Schulze C., Baumeister H., Buck F., Richter D. Rat insulin-degrading enzyme: cleavage pattern of the natriuretic peptide hormones ANP, BNP, and CNP revealed by HPLC and mass spectrometry. Biochemistry. 1992 Nov 17;31(45):11138–11143. doi: 10.1021/bi00160a026. [DOI] [PubMed] [Google Scholar]
  27. Perlman R. K., Rosner M. R. Identification of zinc ligands of the insulin-degrading enzyme. J Biol Chem. 1994 Dec 30;269(52):33140–33145. [PubMed] [Google Scholar]
  28. Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., Cotman C. W. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci. 1993 Apr;13(4):1676–1687. doi: 10.1523/JNEUROSCI.13-04-01676.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pike C. J., Walencewicz-Wasserman A. J., Kosmoski J., Cribbs D. H., Glabe C. G., Cotman C. W. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem. 1995 Jan;64(1):253–265. doi: 10.1046/j.1471-4159.1995.64010253.x. [DOI] [PubMed] [Google Scholar]
  30. Podlisny M. B., Ostaszewski B. L., Squazzo S. L., Koo E. H., Rydell R. E., Teplow D. B., Selkoe D. J. Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem. 1995 Apr 21;270(16):9564–9570. doi: 10.1074/jbc.270.16.9564. [DOI] [PubMed] [Google Scholar]
  31. Qiu W. Q., Walsh D. M., Ye Z., Vekrellis K., Zhang J., Podlisny M. B., Rosner M. R., Safavi A., Hersh L. B., Selkoe D. J. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem. 1998 Dec 4;273(49):32730–32738. doi: 10.1074/jbc.273.49.32730. [DOI] [PubMed] [Google Scholar]
  32. Qiu W. Q., Ye Z., Kholodenko D., Seubert P., Selkoe D. J. Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J Biol Chem. 1997 Mar 7;272(10):6641–6646. doi: 10.1074/jbc.272.10.6641. [DOI] [PubMed] [Google Scholar]
  33. Roth R. A., Mesirow M. L., Yokono K., Baba S. Degradation of insulin-like growth factors I and II by a human insulin degrading enzyme. Endocr Res. 1984;10(2):101–112. doi: 10.3109/07435808409035411. [DOI] [PubMed] [Google Scholar]
  34. Safavi A., Miller B. C., Cottam L., Hersh L. B. Identification of gamma-endorphin-generating enzyme as insulin-degrading enzyme. Biochemistry. 1996 Nov 12;35(45):14318–14325. doi: 10.1021/bi960582q. [DOI] [PubMed] [Google Scholar]
  35. Selkoe D. J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 1999 Jun 24;399(6738 Suppl):A23–A31. doi: 10.1038/399a023. [DOI] [PubMed] [Google Scholar]
  36. Seta K. A., Roth R. A. Overexpression of insulin degrading enzyme: cellular localization and effects on insulin signaling. Biochem Biophys Res Commun. 1997 Feb 3;231(1):167–171. doi: 10.1006/bbrc.1997.6066. [DOI] [PubMed] [Google Scholar]
  37. Shii K., Roth R. A. Inhibition of insulin degradation by hepatoma cells after microinjection of monoclonal antibodies to a specific cytosolic protease. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4147–4151. doi: 10.1073/pnas.83.12.4147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev. 1998 Jan;78(1):171–188. doi: 10.1152/physrev.1998.78.1.171. [DOI] [PubMed] [Google Scholar]
  39. Vekrellis K., Ye Z., Qiu W. Q., Walsh D., Hartley D., Chesneau V., Rosner M. R., Selkoe D. J. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci. 2000 Mar 1;20(5):1657–1665. doi: 10.1523/JNEUROSCI.20-05-01657.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Walsh D. M., Hartley D. M., Kusumoto Y., Fezoui Y., Condron M. M., Lomakin A., Benedek G. B., Selkoe D. J., Teplow D. B. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem. 1999 Sep 3;274(36):25945–25952. doi: 10.1074/jbc.274.36.25945. [DOI] [PubMed] [Google Scholar]
  41. Yamin R., Malgeri E. G., Sloane J. A., McGraw W. T., Abraham C. R. Metalloendopeptidase EC 3.4.24.15 is necessary for Alzheimer's amyloid-beta peptide degradation. J Biol Chem. 1999 Jun 25;274(26):18777–18784. doi: 10.1074/jbc.274.26.18777. [DOI] [PubMed] [Google Scholar]
  42. Yankner B. A., Duffy L. K., Kirschner D. A. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science. 1990 Oct 12;250(4978):279–282. doi: 10.1126/science.2218531. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES