Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Nov 1;351(Pt 3):595–605.

The pH dependence of naturally occurring low-spin forms of methaemoglobin and metmyoglobin: an EPR study.

D A Svistunenko 1, M A Sharpe 1, P Nicholls 1, C Blenkinsop 1, N A Davies 1, J Dunne 1, M T Wilson 1, C E Cooper 1
PMCID: PMC1221398  PMID: 11042113

Abstract

The paramagnetic species in human metHb and horse metmyoglobin (metMb) have been studied at low temperature using EPR spectroscopy. The high-spin (HS) haem signal in aquometMb has a greater rhombic distortion than the HS metHb signal. Nevertheless, the individual line width (g=6) is smaller in metMb than in metHb, consistent with non-identical signals from the alpha and beta Hb subunits. Three low-spin (LS) haem forms are present in metHb, while metMb has only two. The major LS form in both proteins is the alkaline species (with OH(-) at the sixth co-ordination position). The minor LS forms are assigned to different histidine hemichromes in equilibrium with the normal HS species at low temperature. LS forms disappear when the haem is bound by a ligand, such as fluoride, which ensures 100% occupancy of the HS state both at room temperature and at 25 K. The small differences in effective g-factors of the histidine hemichromes are interpreted in terms of different distances between the distal histidine and haem iron. The pH dependence of the inter-conversion of the different paramagnetic species is consistent with a model whereby protonation of a residue with a pK of 5.69 (metHb) or 6.12 (metMb), affects ligand binding and transformation from the HS to the LS form. Chemical and spectroscopic considerations suggest that the residue is unlikely to be the proximal or distal histidine. We therefore propose a model where protonation of this distant amino acid causes a conformational change at the iron site. Identical effects are seen in frozen human blood, suggesting that this effect may have physiological significance.

Full Text

The Full Text of this article is available as a PDF (276.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasa R. Re-interpretation of the electron paramagnetic resonance spectra of transferrins. Biochem Biophys Res Commun. 1972 Nov 1;49(3):806–812. doi: 10.1016/0006-291x(72)90482-2. [DOI] [PubMed] [Google Scholar]
  2. Berzofsky J. A., Peisach J., Blumberg W. E. Sulfheme proteins. I. Optical and magnetic properties of sulfmyoglobin and its derivatives. J Biol Chem. 1971 May 25;246(10):3367–3377. [PubMed] [Google Scholar]
  3. Brunori M., Amiconi G., Antonin E., Wyman J., Zito R., Fanelli A. R. The transition between 'acid' and 'alkaline' ferric heme proteins. Biochim Biophys Acta. 1968 Feb 19;154(2):315–322. doi: 10.1016/0005-2795(68)90045-7. [DOI] [PubMed] [Google Scholar]
  4. GEORGE P., HANANIA G. The ionization of acidic metmyoglobin. Biochem J. 1952 Nov;52(3):517–523. doi: 10.1042/bj0520517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gouet P., Jouve H. M., Dideberg O. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol. 1995 Jun 23;249(5):933–954. doi: 10.1006/jmbi.1995.0350. [DOI] [PubMed] [Google Scholar]
  6. Levy A., Kuppusamy P., Rifkind J. M. Multiple heme pocket subconformations of methemoglobin associated with distal histidine interactions. Biochemistry. 1990 Oct 9;29(40):9311–9316. doi: 10.1021/bi00492a002. [DOI] [PubMed] [Google Scholar]
  7. Liddington R., Derewenda Z., Dodson E., Hubbard R., Dodson G. High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-state haemoglobins: T(alpha-oxy)haemoglobin and T(met)haemoglobin. J Mol Biol. 1992 Nov 20;228(2):551–579. doi: 10.1016/0022-2836(92)90842-8. [DOI] [PubMed] [Google Scholar]
  8. Maurus R., Overall C. M., Bogumil R., Luo Y., Mauk A. G., Smith M., Brayer G. D. A myoglobin variant with a polar substitution in a conserved hydrophobic cluster in the heme binding pocket. Biochim Biophys Acta. 1997 Aug 15;1341(1):1–13. doi: 10.1016/s0167-4838(97)00064-2. [DOI] [PubMed] [Google Scholar]
  9. Merryweather J., Summers F., Vitello L. B., Erman J. E. Metmyoglobin/fluoride: effect of distal histidine protonation on the association and dissociation rate constants. Arch Biochem Biophys. 1998 Oct 15;358(2):359–368. doi: 10.1006/abbi.1998.0872. [DOI] [PubMed] [Google Scholar]
  10. Müller J. D., McMahon B. H., Chien E. Y., Sligar S. G., Nienhaus G. U. Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin. Biophys J. 1999 Aug;77(2):1036–1051. doi: 10.1016/s0006-3495(99)76954-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Orii Y., Morita M. Measurement of the pH of frozen buffer solutions by using pH indicators. J Biochem. 1977 Jan;81(1):163–168. doi: 10.1093/oxfordjournals.jbchem.a131431. [DOI] [PubMed] [Google Scholar]
  12. Peisach J., Blumberg W. E., Ogawa S., Rachmilewitz E. A., Oltzik R. The effects of protein conformation on the heme symmetry in high spin ferric heme proteins as studied by electron paramagnetic resonance. J Biol Chem. 1971 May 25;246(10):3342–3355. [PubMed] [Google Scholar]
  13. Peisach J., Blumberg W. E., Wittenberg B. A., Wittenberg J. B., Kampa L. Hemoglobin A: an electron paramagnetic resonance study of the effects of interchain contacts on the heme symmetry of high-spin and low-spin derivatives of ferric alpha chains. Proc Natl Acad Sci U S A. 1969 Jul;63(3):934–939. doi: 10.1073/pnas.63.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peisach J., Blumberg W. E., Wittenberg B. A., Wittenberg J. B. The electronic structure of protoheme proteins. 3. Configuration of the heme and its ligands. J Biol Chem. 1968 Apr 25;243(8):1871–1880. [PubMed] [Google Scholar]
  15. Perutz M. F., Heidner E. J., Ladner J. E., Beetlestone J. G., Ho C., Slade E. F. Influence of globin structure on the state of the heme. 3. Changes in heme spectra accompanying allosteric transitions in methemoglobin and their implications for heme-heme interaction. Biochemistry. 1974 May 7;13(10):2187–2200. doi: 10.1021/bi00707a028. [DOI] [PubMed] [Google Scholar]
  16. Salerno J. C., Frey C., McMillan K., Williams R. F., Masters B. S., Griffith O. W. Characterization by electron paramagnetic resonance of the interactions of L-arginine and L-thiocitrulline with the heme cofactor region of nitric oxide synthase. J Biol Chem. 1995 Nov 17;270(46):27423–27428. doi: 10.1074/jbc.270.46.27423. [DOI] [PubMed] [Google Scholar]
  17. Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
  18. Svistunenko D. A., Patel R. P., Voloshchenko S. V., Wilson M. T. The globin-based free radical of ferryl hemoglobin is detected in normal human blood. J Biol Chem. 1997 Mar 14;272(11):7114–7121. doi: 10.1074/jbc.272.11.7114. [DOI] [PubMed] [Google Scholar]
  19. Svistunenko D. A., Rob A., Ball A., Torres J., Symons M. C., Wilson M. T., Cooper C. E. The electron paramagnetic resonance characterisation of a copper-containing extracellular peroxidase from Thermomonospora fusca BD25. Biochim Biophys Acta. 1999 Sep 14;1434(1):74–85. doi: 10.1016/s0167-4838(99)00163-6. [DOI] [PubMed] [Google Scholar]
  20. Svistunenko D. A., Sharpe M. A., Nicholls P., Wilson M. T., Cooper C. E. A new method for quantitation of spin concentration by EPR spectroscopy: application to methemoglobin and metmyoglobin. J Magn Reson. 2000 Feb;142(2):266–275. doi: 10.1006/jmre.1999.1935. [DOI] [PubMed] [Google Scholar]
  21. Symons M. C., Petersen R. L. Electron capture by oxyhaemoglobin: an e.s.r. study. Proc R Soc Lond B Biol Sci. 1978 May 16;201(1144):285–300. doi: 10.1098/rspb.1978.0046. [DOI] [PubMed] [Google Scholar]
  22. Tian W. D., Sage J. T., Champion P. M. Investigations of ligand association and dissociation rates in the "open" and "closed" states of myoglobin. J Mol Biol. 1993 Sep 5;233(1):155–166. doi: 10.1006/jmbi.1993.1491. [DOI] [PubMed] [Google Scholar]
  23. Tsuruga M., Matsuoka A., Hachimori A., Sugawara Y., Shikama K. The molecular mechanism of autoxidation for human oxyhemoglobin. Tilting of the distal histidine causes nonequivalent oxidation in the beta chain. J Biol Chem. 1998 Apr 10;273(15):8607–8615. doi: 10.1074/jbc.273.15.8607. [DOI] [PubMed] [Google Scholar]
  24. Williams-Smith D. L., Bray R. C., Barber M. J., Tsopanakis A. D., Vincent S. P. Changes in apparent pH on freezing aqueous buffer solutions and their relevance to biochemical electron-paramagnetic-resonance spectroscopy. Biochem J. 1977 Dec 1;167(3):593–600. doi: 10.1042/bj1670593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yang F., Phillips G. N., Jr Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J Mol Biol. 1996 Mar 8;256(4):762–774. doi: 10.1006/jmbi.1996.0123. [DOI] [PubMed] [Google Scholar]
  26. Yonetani T., Iizuka T., Waterman M. R. Studies on modified hemoglobins. 3. Spin states of ferric hemoglobin, semi-hemoglobin, and isolated subunit chains. J Biol Chem. 1971 Dec 25;246(24):7683–7689. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES