Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Nov 1;351(Pt 3):607–612.

Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts.

I V Fuki 1, M E Meyer 1, K J Williams 1
PMCID: PMC1221399  PMID: 11042114

Abstract

Syndecan heparan sulphate proteoglycans directly mediate a novel endocytic pathway. Using Chinese hamster ovary cells expressing the human syndecan 1 core protein or a chimaeric receptor, FcR-Synd, consisting of the ectodomain of the IgG Fc receptor Ia linked to the transmembrane and cytoplasmic domains of syndecan 1, we previously reported that efficient internalization is triggered by ligand clustering, requires intact actin microfilaments and tyrosine kinases, proceeds with a t(1/2) of approx. 1 h and is distinct from coated-pit pathways. We have now examined the involvement of cholesterol-rich, detergent-insoluble membrane rafts. On clustering, (125)I-labelled IgG bound to FcR-Synd rapidly became insoluble in cold Triton X-100, well before endocytosis. Insolubility of clustered FcR-Synd ligand did not require the syndecan ectodomain, linkage of the cytoplasmic tail to the cytoskeleton, or energy-dependent cellular metabolism. Pretreatment of cells with cyclodextrin to deplete cholesterol from rafts abolished insolubility of the clustered ligand and inhibited endocytosis in a dose-responsive fashion. Similar results were obtained with (125)I-labelled lipoprotein lipase bound to authentic cell-surface syndecan. In contrast, the 39 kDa receptor-associated protein (RAP), a coated-pit ligand, was more than 80% soluble in cold Triton even after internalization; cellular cholesterol depletion failed to substantially affect the internalization of (125)I-RAP. Overall, our results indicate a multi-step endocytic process consisting of ligand binding, clustering, energy-independent lateral movement into detergent-insoluble membrane rafts and finally recruitment of actin and tyrosine kinases to bring the ligands into the cell.

Full Text

The Full Text of this article is available as a PDF (137.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. Anderson R. G. Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10909–10913. doi: 10.1073/pnas.90.23.10909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bierman E. L., Stein O., Stein Y. Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture. Circ Res. 1974 Jul;35(1):136–150. doi: 10.1161/01.res.35.1.136. [DOI] [PubMed] [Google Scholar]
  4. Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
  5. Bu G., Maksymovitch E. A., Geuze H., Schwartz A. L. Subcellular localization and endocytic function of low density lipoprotein receptor-related protein in human glioblastoma cells. J Biol Chem. 1994 Nov 25;269(47):29874–29882. [PubMed] [Google Scholar]
  6. Carey D. J., Bendt K. M., Stahl R. C. The cytoplasmic domain of syndecan-1 is required for cytoskeleton association but not detergent insolubility. Identification of essential cytoplasmic domain residues. J Biol Chem. 1996 Jun 21;271(25):15253–15260. doi: 10.1074/jbc.271.25.15253. [DOI] [PubMed] [Google Scholar]
  7. Carey D. J., Stahl R. C., Tucker B., Bendt K. A., Cizmeci-Smith G. Aggregation-induced association of syndecan-1 with microfilaments mediated by the cytoplasmic domain. Exp Cell Res. 1994 Sep;214(1):12–21. doi: 10.1006/excr.1994.1228. [DOI] [PubMed] [Google Scholar]
  8. Chappell D. A., Fry G. L., Waknitz M. A., Iverius P. H., Williams S. E., Strickland D. K. The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor binds and mediates catabolism of bovine milk lipoprotein lipase. J Biol Chem. 1992 Dec 25;267(36):25764–25767. [PubMed] [Google Scholar]
  9. Czekay R. P., Orlando R. A., Woodward L., Adamson E. D., Farquhar M. G. The expression of megalin (gp330) and LRP diverges during F9 cell differentiation. J Cell Sci. 1995 Apr;108(Pt 4):1433–1441. doi: 10.1242/jcs.108.4.1433. [DOI] [PubMed] [Google Scholar]
  10. Davis W., Harrison P. T., Hutchinson M. J., Allen J. M. Two distinct regions of FC gamma RI initiate separate signalling pathways involved in endocytosis and phagocytosis. EMBO J. 1995 Feb 1;14(3):432–441. doi: 10.1002/j.1460-2075.1995.tb07019.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FitzGerald D. J., Fryling C. M., Zdanovsky A., Saelinger C. B., Kounnas M., Winkles J. A., Strickland D., Leppla S. Pseudomonas exotoxin-mediated selection yields cells with altered expression of low-density lipoprotein receptor-related protein. J Cell Biol. 1995 Jun;129(6):1533–1541. doi: 10.1083/jcb.129.6.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuki I. V., Iozzo R. V., Williams K. J. Perlecan heparan sulfate proteoglycan: a novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem. 2000 Aug 18;275(33):25742–25750. doi: 10.1074/jbc.M909173199. [DOI] [PubMed] [Google Scholar]
  13. Fuki I. V., Kuhn K. M., Lomazov I. R., Rothman V. L., Tuszynski G. P., Iozzo R. V., Swenson T. L., Fisher E. A., Williams K. J. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J Clin Invest. 1997 Sep 15;100(6):1611–1622. doi: 10.1172/JCI119685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gleizes P. E., Noaillac-Depeyre J., Amalric F., Gas N. Basic fibroblast growth factor (FGF-2) internalization through the heparan sulfate proteoglycans-mediated pathway: an ultrastructural approach. Eur J Cell Biol. 1995 Jan;66(1):47–59. [PubMed] [Google Scholar]
  15. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  16. Herz J., Hamann U., Rogne S., Myklebost O., Gausepohl H., Stanley K. K. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 1988 Dec 20;7(13):4119–4127. doi: 10.1002/j.1460-2075.1988.tb03306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Irie T., Otagiri M., Sunada M., Uekama K., Ohtani Y., Yamada Y., Sugiyama Y. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J Pharmacobiodyn. 1982 Sep;5(9):741–744. doi: 10.1248/bpb1978.5.741. [DOI] [PubMed] [Google Scholar]
  18. Jackson J. H., Li J. W., Buss J. E., Der C. J., Cochrane C. G. Polylysine domain of K-ras 4B protein is crucial for malignant transformation. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12730–12734. doi: 10.1073/pnas.91.26.12730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ji Z. S., Pitas R. E., Mahley R. W. Differential cellular accumulation/retention of apolipoprotein E mediated by cell surface heparan sulfate proteoglycans. Apolipoproteins E3 and E2 greater than e4. J Biol Chem. 1998 May 29;273(22):13452–13460. doi: 10.1074/jbc.273.22.13452. [DOI] [PubMed] [Google Scholar]
  20. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  21. Maxfield F. R., Mayor S. Cell surface dynamics of GPI-anchored proteins. Adv Exp Med Biol. 1997;419:355–364. doi: 10.1007/978-1-4419-8632-0_47. [DOI] [PubMed] [Google Scholar]
  22. Mayor S., Rothberg K. G., Maxfield F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science. 1994 Jun 24;264(5167):1948–1951. doi: 10.1126/science.7516582. [DOI] [PubMed] [Google Scholar]
  23. Miettinen H. M., Jalkanen M. The cytoplasmic domain of syndecan-1 is not required for association with Triton X-100-insoluble material. J Cell Sci. 1994 Jun;107(Pt 6):1571–1581. doi: 10.1242/jcs.107.6.1571. [DOI] [PubMed] [Google Scholar]
  24. Miranda A. F., Godman G. C., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments. J Cell Biol. 1974 Aug;62(2):406–423. doi: 10.1083/jcb.62.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Osborne J. C., Jr, Bengtsson-Olivecrona G., Lee N. S., Olivecrona T. Studies on inactivation of lipoprotein lipase: role of the dimer to monomer dissociation. Biochemistry. 1985 Sep 24;24(20):5606–5611. doi: 10.1021/bi00341a048. [DOI] [PubMed] [Google Scholar]
  26. Parton R. G. Caveolae and caveolins. Curr Opin Cell Biol. 1996 Aug;8(4):542–548. doi: 10.1016/s0955-0674(96)80033-0. [DOI] [PubMed] [Google Scholar]
  27. Quarto N., Amalric F. Heparan sulfate proteoglycans as transducers of FGF-2 signalling. J Cell Sci. 1994 Nov;107(Pt 11):3201–3212. doi: 10.1242/jcs.107.11.3201. [DOI] [PubMed] [Google Scholar]
  28. Rapraeger A., Jalkanen M., Bernfield M. Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J Cell Biol. 1986 Dec;103(6 Pt 2):2683–2696. doi: 10.1083/jcb.103.6.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reiland J., Rapraeger A. C. Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J Cell Sci. 1993 Aug;105(Pt 4):1085–1093. doi: 10.1242/jcs.105.4.1085. [DOI] [PubMed] [Google Scholar]
  30. Rodal S. K., Skretting G., Garred O., Vilhardt F., van Deurs B., Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell. 1999 Apr;10(4):961–974. doi: 10.1091/mbc.10.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rodrigueza W. V., Williams K. J., Rothblat G. H., Phillips M. C. Remodeling and shuttling. Mechanisms for the synergistic effects between different acceptor particles in the mobilization of cellular cholesterol. Arterioscler Thromb Vasc Biol. 1997 Feb;17(2):383–393. doi: 10.1161/01.atv.17.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rothblat G. H., DeMartinis F. D. Release of lipoprotein lipase from rat adipose tissue cells grown in culture. Biochem Biophys Res Commun. 1977 Sep 9;78(1):45–50. doi: 10.1016/0006-291x(77)91219-0. [DOI] [PubMed] [Google Scholar]
  33. Saxena U., Witte L. D., Goldberg I. J. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem. 1989 Mar 15;264(8):4349–4355. [PubMed] [Google Scholar]
  34. Schlegel A., Volonte D., Engelman J. A., Galbiati F., Mehta P., Zhang X. L., Scherer P. E., Lisanti M. P. Crowded little caves: structure and function of caveolae. Cell Signal. 1998 Jul;10(7):457–463. doi: 10.1016/s0898-6568(98)00007-2. [DOI] [PubMed] [Google Scholar]
  35. Sehayek E., Wang X. X., Vlodavsky I., Avner R., Levkovitz H., Olivecrona T., Olivecrona G., Willnow T. E., Herz J., Eisenberg S. Heparan sulfate-dependent and low density lipoprotein receptor-related protein-dependent catabolic pathways for lipoprotein lipase in mouse embryonic fibroblasts. Isr J Med Sci. 1996 Jun;32(6):449–454. [PubMed] [Google Scholar]
  36. Shimada K., Gill P. J., Silbert J. E., Douglas W. H., Fanburg B. L. Involvement of cell surface heparin sulfate in the binding of lipoprotein lipase to cultured bovine endothelial cells. J Clin Invest. 1981 Oct;68(4):995–1002. doi: 10.1172/JCI110354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  38. Sivaram P., Klein M. G., Goldberg I. J. Identification of a heparin-releasable lipoprotein lipase binding protein from endothelial cells. J Biol Chem. 1992 Aug 15;267(23):16517–16522. [PubMed] [Google Scholar]
  39. Skiba P. J., Zha X., Maxfield F. R., Schissel S. L., Tabas I. The distal pathway of lipoprotein-induced cholesterol esterification, but not sphingomyelinase-induced cholesterol esterification, is energy-dependent. J Biol Chem. 1996 Jun 7;271(23):13392–13400. doi: 10.1074/jbc.271.23.13392. [DOI] [PubMed] [Google Scholar]
  40. Socorro L., Green C. C., Jackson R. L. Preparation of a homogeneous and stable form of bovine milk lipoprotein lipase. Prep Biochem. 1985;15(3):133–143. doi: 10.1080/10826068508062267. [DOI] [PubMed] [Google Scholar]
  41. Spring J., Paine-Saunders S. E., Hynes R. O., Bernfield M. Drosophila syndecan: conservation of a cell-surface heparan sulfate proteoglycan. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3334–3338. doi: 10.1073/pnas.91.8.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Strickland D. K., Ashcom J. D., Williams S., Battey F., Behre E., McTigue K., Battey J. F., Argraves W. S. Primary structure of alpha 2-macroglobulin receptor-associated protein. Human homologue of a Heymann nephritis antigen. J Biol Chem. 1991 Jul 15;266(20):13364–13369. [PubMed] [Google Scholar]
  43. Subtil A., Gaidarov I., Kobylarz K., Lampson M. A., Keen J. H., McGraw T. E. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6775–6780. doi: 10.1073/pnas.96.12.6775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sun X., Kaesberg P. R., Choay J., Harenberg J., Ershler W. B., Mosher D. F. Effects of sized heparin oligosaccharide on the interactions of Chinese hamster ovary cell with thrombospondin. Semin Thromb Hemost. 1992;18(2):243–251. doi: 10.1055/s-2007-1002430. [DOI] [PubMed] [Google Scholar]
  45. Tabas I., Myers J. N., Innerarity T. L., Xu X. X., Arnold K., Boyles J., Maxfield F. R. The influence of particle size and multiple apoprotein E-receptor interactions on the endocytic targeting of beta-VLDL in mouse peritoneal macrophages. J Cell Biol. 1991 Dec;115(6):1547–1560. doi: 10.1083/jcb.115.6.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Warshawsky I., Schwartz A. L. The 39-kDa protein regulates LRP activity in cultured endothelial and smooth muscle cells. Eur J Cell Biol. 1996 Feb;69(2):156–165. [PubMed] [Google Scholar]
  47. Weigel P. H., Oka J. A. Endocytosis and degradation mediated by the asialoglycoprotein receptor in isolated rat hepatocytes. J Biol Chem. 1982 Feb 10;257(3):1201–1207. [PubMed] [Google Scholar]
  48. Williams S. E., Ashcom J. D., Argraves W. S., Strickland D. K. A novel mechanism for controlling the activity of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J Biol Chem. 1992 May 5;267(13):9035–9040. [PubMed] [Google Scholar]
  49. Willnow T. E., Goldstein J. L., Orth K., Brown M. S., Herz J. Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1992 Dec 25;267(36):26172–26180. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES