Abstract
Inhibitors of signalling pathways were used to dissect the mechanism of insulin action on expression of the gene encoding glucokinase in cultured rat hepatocytes. Wortmannin and LY 294002 completely prevented the insulin-induced increase in glucokinase mRNA seen in unhibited cells, indicating that the phosphoinositide 3-kinase module has a key role. A ligand inducible protein kinase B (PKB, also termed cAkt) fusion protein was expressed by using adenoviral transduction of hepatocytes in primary culture. The PKB activity of this protein was shown to be activated in transduced hepatocytes within 30 min of the addition of 4-hydroxytamoxifen and to stay high for 8 h, as a result of serine phosphorylation at position 473 of PKB. The increase in PKB activity was reflected in the hyperphosphorylation of phosphorylated, heat and acid stable regulated by insulin protein (PHAS-I; also termed 4E-BP1, for eukaryotic initiation factor 4E-binding protein 1), a protein involved in the regulation of translation initiation. These effects were comparable to the insulin-induced activation of endogenous PKB and phosphorylation of PHAS-I in non-transduced hepatocytes. The addition of tamoxifen to transduced hepatocytes resulted in an induction of glucokinase mRNA with kinetics and magnitude similar to those of insulin-induced mRNA accumulation. The effect of tamoxifen depended on stimulated PKB activity because it did not occur in hepatocytes that were transduced with a mutant PKB fusion protein that was refractory to activation with tamoxifen. These results establish that acute activation of PKB is sufficient to produce an insulin-like induction of glucokinase in isolated hepatocytes. Together with the inhibition by phosphoinositide 3-kinase inhibitors, they suggest that the activation of PKB might be critical in mediating the induction of glucokinase by insulin. In addition, experiments showed that PD98059 decreased by half the increase in glucokinase mRNA brought about by insulin, suggesting a contributory role of the mitogen-activated protein kinase cascade.
Full Text
The Full Text of this article is available as a PDF (229.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Peak M., Newgard C. B., Gomez-Foix A. M., Guinovart J. J. Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J Biol Chem. 1996 Nov 29;271(48):30479–30486. doi: 10.1074/jbc.271.48.30479. [DOI] [PubMed] [Google Scholar]
- Ahmad F., Cong L. N., Stenson Holst L., Wang L. M., Rahn Landstrom T., Pierce J. H., Quon M. J., Degerman E., Manganiello V. C. Cyclic nucleotide phosphodiesterase 3B is a downstream target of protein kinase B and may be involved in regulation of effects of protein kinase B on thymidine incorporation in FDCP2 cells. J Immunol. 2000 May 1;164(9):4678–4688. doi: 10.4049/jimmunol.164.9.4678. [DOI] [PubMed] [Google Scholar]
- Barthel A., Okino S. T., Liao J., Nakatani K., Li J., Whitlock J. P., Jr, Roth R. A. Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem. 1999 Jul 16;274(29):20281–20286. doi: 10.1074/jbc.274.29.20281. [DOI] [PubMed] [Google Scholar]
- Fleischmann M., Iynedjian P. B. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem J. 2000 Jul 1;349(Pt 1):13–17. doi: 10.1042/0264-6021:3490013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foretz M., Guichard C., Ferré P., Foufelle F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12737–12742. doi: 10.1073/pnas.96.22.12737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabbay R. A., Sutherland C., Gnudi L., Kahn B. B., O'Brien R. M., Granner D. K., Flier J. S. Insulin regulation of phosphoenolpyruvate carboxykinase gene expression does not require activation of the Ras/mitogen-activated protein kinase signaling pathway. J Biol Chem. 1996 Jan 26;271(4):1890–1897. doi: 10.1074/jbc.271.4.1890. [DOI] [PubMed] [Google Scholar]
- Iynedjian P. B., Gjinovci A., Renold A. E. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J Biol Chem. 1988 Jan 15;263(2):740–744. [PubMed] [Google Scholar]
- Iynedjian P. B. Identification of upstream stimulatory factor as transcriptional activator of the liver promoter of the glucokinase gene. Biochem J. 1998 Aug 1;333(Pt 3):705–712. doi: 10.1042/bj3330705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iynedjian P. B., Jotterand D., Nouspikel T., Asfari M., Pilot P. R. Transcriptional induction of glucokinase gene by insulin in cultured liver cells and its repression by the glucagon-cAMP system. J Biol Chem. 1989 Dec 25;264(36):21824–21829. [PubMed] [Google Scholar]
- Iynedjian P. B. Mammalian glucokinase and its gene. Biochem J. 1993 Jul 1;293(Pt 1):1–13. doi: 10.1042/bj2930001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iynedjian P. B., Marie S., Gjinovci A., Genin B., Deng S. P., Buhler L., Morel P., Mentha G. Glucokinase and cytosolic phosphoenolpyruvate carboxykinase (GTP) in the human liver. Regulation of gene expression in cultured hepatocytes. J Clin Invest. 1995 May;95(5):1966–1973. doi: 10.1172/JCI117880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iynedjian P. B., Marie S., Wang H., Gjinovci A., Nazaryan K. Liver-specific enhancer of the glucokinase gene. J Biol Chem. 1996 Nov 15;271(46):29113–29120. doi: 10.1074/jbc.271.46.29113. [DOI] [PubMed] [Google Scholar]
- Iynedjian P. B., Möbius G., Seitz H. J., Wollheim C. B., Renold A. E. Tissue-specific expression of glucokinase: identification of the gene product in liver and pancreatic islets. Proc Natl Acad Sci U S A. 1986 Apr;83(7):1998–2001. doi: 10.1073/pnas.83.7.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones P. F., Jakubowicz T., Pitossi F. J., Maurer F., Hemmings B. A. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4171–4175. doi: 10.1073/pnas.88.10.4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz N. R., Nauck M. A., Wilson P. T. Induction of glucokinase by insulin under the permissive action of dexamethasone in primary rat hepatocyte cultures. Biochem Biophys Res Commun. 1979 May 14;88(1):23–29. doi: 10.1016/0006-291x(79)91691-7. [DOI] [PubMed] [Google Scholar]
- Kitamura T., Kitamura Y., Kuroda S., Hino Y., Ando M., Kotani K., Konishi H., Matsuzaki H., Kikkawa U., Ogawa W. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol Cell Biol. 1999 Sep;19(9):6286–6296. doi: 10.1128/mcb.19.9.6286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohn A. D., Barthel A., Kovacina K. S., Boge A., Wallach B., Summers S. A., Birnbaum M. J., Scott P. H., Lawrence J. C., Jr, Roth R. A. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem. 1998 May 8;273(19):11937–11943. doi: 10.1074/jbc.273.19.11937. [DOI] [PubMed] [Google Scholar]
- Kotani K., Ogawa W., Hino Y., Kitamura T., Ueno H., Sano W., Sutherland C., Granner D. K., Kasuga M. Dominant negative forms of Akt (protein kinase B) and atypical protein kinase Clambda do not prevent insulin inhibition of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem. 1999 Jul 23;274(30):21305–21312. doi: 10.1074/jbc.274.30.21305. [DOI] [PubMed] [Google Scholar]
- Kotzka J., Müller-Wieland D., Roth G., Kremer L., Munck M., Schürmann S., Knebel B., Krone W. Sterol regulatory element binding proteins (SREBP)-1a and SREBP-2 are linked to the MAP-kinase cascade. J Lipid Res. 2000 Jan;41(1):99–108. [PubMed] [Google Scholar]
- Liao J., Barthel A., Nakatani K., Roth R. A. Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene. J Biol Chem. 1998 Oct 16;273(42):27320–27324. doi: 10.1074/jbc.273.42.27320. [DOI] [PubMed] [Google Scholar]
- Magnuson M. A., Andreone T. L., Printz R. L., Koch S., Granner D. K. Rat glucokinase gene: structure and regulation by insulin. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4838–4842. doi: 10.1073/pnas.86.13.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mothe-Satney I., Yang D., Fadden P., Haystead T. A., Lawrence J. C., Jr Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol. 2000 May;20(10):3558–3567. doi: 10.1128/mcb.20.10.3558-3567.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navé B. T., Ouwens M., Withers D. J., Alessi D. R., Shepherd P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999 Dec 1;344(Pt 2):427–431. [PMC free article] [PubMed] [Google Scholar]
- Nouspikel T., Iynedjian P. B. Insulin signalling and regulation of glucokinase gene expression in cultured hepatocytes. Eur J Biochem. 1992 Nov 15;210(1):365–373. doi: 10.1111/j.1432-1033.1992.tb17430.x. [DOI] [PubMed] [Google Scholar]
- Rondinone C. M., Carvalho E., Rahn T., Manganiello V. C., Degerman E., Smith U. P. Phosphorylation of PDE3B by phosphatidylinositol 3-kinase associated with the insulin receptor. J Biol Chem. 2000 Apr 7;275(14):10093–10098. doi: 10.1074/jbc.275.14.10093. [DOI] [PubMed] [Google Scholar]
- Salavert A., Iynedjian P. B. Regulation of phosphoenolpyruvate carboxykinase (GTP) synthesis in rat liver cells. Rapid induction of specific mRNA by glucagon or cyclic AMP and permissive effect of dexamethasone. J Biol Chem. 1982 Nov 25;257(22):13404–13412. [PubMed] [Google Scholar]
- Schudt C. Hormonal regulation of glucokinase in primary cultures of rat hepatocytes. Eur J Biochem. 1979 Jul;98(1):77–82. doi: 10.1111/j.1432-1033.1979.tb13162.x. [DOI] [PubMed] [Google Scholar]
- Scott P. H., Brunn G. J., Kohn A. D., Roth R. A., Lawrence J. C., Jr Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7772–7777. doi: 10.1073/pnas.95.13.7772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sebastian S., Horton J. D., Wilson J. E. Anabolic function of the type II isozyme of hexokinase in hepatic lipid synthesis. Biochem Biophys Res Commun. 2000 Apr 21;270(3):886–891. doi: 10.1006/bbrc.2000.2527. [DOI] [PubMed] [Google Scholar]
- Vanhaesebroeck B., Alessi D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [PMC free article] [PubMed] [Google Scholar]
- Wijkander J., Landström T. R., Manganiello V., Belfrage P., Degerman E. Insulin-induced phosphorylation and activation of phosphodiesterase 3B in rat adipocytes: possible role for protein kinase B but not mitogen-activated protein kinase or p70 S6 kinase. Endocrinology. 1998 Jan;139(1):219–227. doi: 10.1210/endo.139.1.5693. [DOI] [PubMed] [Google Scholar]
- Yang D., Brunn G. J., Lawrence J. C., Jr Mutational analysis of sites in the translational regulator, PHAS-I, that are selectively phosphorylated by mTOR. FEBS Lett. 1999 Jun 25;453(3):387–390. doi: 10.1016/s0014-5793(99)00762-0. [DOI] [PubMed] [Google Scholar]