Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Nov 1;351(Pt 3):639–647.

Sequencing, functional expression and characterization of rat NTPDase6, a nucleoside diphosphatase and novel member of the ecto-nucleoside triphosphate diphosphohydrolase family.

N Braun 1, S Fengler 1, C Ebeling 1, J Servos 1, H Zimmermann 1
PMCID: PMC1221403  PMID: 11042118

Abstract

We have isolated and characterized the cDNA encoding nucleoside triphosphate diphosphohydrolase 6 (NTPDase6), a novel member of the ecto-nucleoside triphosphate diphosphohydrolase family. The rat-brain-derived cDNA has an open reading frame of 1365 bp encoding a protein of 455 amino acid residues, a calculated molecular mass of 49971 Da and a predicted N-terminal hydrophobic sequence. It shares 86% sequence identity with the human CD39L2 sequence and 48% and 51% identity respectively with sequences of the two related human and murine nucleoside diphosphatases (CD39L4, NTPDase5/ER-UDPase). The mRNA was expressed in all tissues investigated, revealing two major transcripts with differing abundances. PCR analysis suggests a single open reading frame. A Myc-His-tagged NTPDase6 was expressed in Chinese hamster ovary (CHO) and PC12 cells for immunological analysis and protein isolation. The protein was contained in membrane fractions of transfected CHO cells and occurred in a soluble form in the cell culture supernatants. NTPDase6 preferentially hydrolysed nucleoside 5'-diphosphates. With different substrates the order of activity was GDP>IDP>>UDP,CDP>>ADP. Nucleoside 5'-triphosphates were hydrolysed only to a minor extent and no hydrolysis of nucleoside 5'-monophosphates was observed. The enzyme was strongly and equally activated by Ca(2+) and Mg(2+) and had a K(m) for GDP of 211 microM. The immunohistochemical analysis of transfected CHO and PC12 cells suggests that NTPDase6 is associated with the Golgi apparatus and to a small extent also with the plasma membrane. The enzyme might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyse the hydrolysis of extracellular nucleotides.

Full Text

The Full Text of this article is available as a PDF (247.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbracchio M. P., Burnstock G. Purinergic signalling: pathophysiological roles. Jpn J Pharmacol. 1998 Oct;78(2):113–145. doi: 10.1254/jjp.78.113. [DOI] [PubMed] [Google Scholar]
  2. Abeijon C., Hirschberg C. B. Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci. 1992 Jan;17(1):32–36. doi: 10.1016/0968-0004(92)90424-8. [DOI] [PubMed] [Google Scholar]
  3. Abeijon C., Yanagisawa K., Mandon E. C., Häusler A., Moremen K., Hirschberg C. B., Robbins P. W. Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol. 1993 Jul;122(2):307–323. doi: 10.1083/jcb.122.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benowitz L. I., Jing Y., Tabibiazar R., Jo S. A., Petrausch B., Stuermer C. A., Rosenberg P. A., Irwin N. Axon outgrowth is regulated by an intracellular purine-sensitive mechanism in retinal ganglion cells. J Biol Chem. 1998 Nov 6;273(45):29626–29634. doi: 10.1074/jbc.273.45.29626. [DOI] [PubMed] [Google Scholar]
  5. Biederbick A., Rose S., Elsässer H. P. A human intracellular apyrase-like protein, LALP70, localizes to lysosomal/autophagic vacuoles. J Cell Sci. 1999 Aug;112(Pt 15):2473–2484. doi: 10.1242/jcs.112.15.2473. [DOI] [PubMed] [Google Scholar]
  6. Bloom G. S., Brashear T. A. A novel 58-kDa protein associates with the Golgi apparatus and microtubules. J Biol Chem. 1989 Sep 25;264(27):16083–16092. [PubMed] [Google Scholar]
  7. Chadwick B. P., Frischauf A. M. The CD39-like gene family: identification of three new human members (CD39L2, CD39L3, and CD39L4), their murine homologues, and a member of the gene family from Drosophila melanogaster. Genomics. 1998 Jun 15;50(3):357–367. doi: 10.1006/geno.1998.5317. [DOI] [PubMed] [Google Scholar]
  8. Gao X. D., Kaigorodov V., Jigami Y. YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae. J Biol Chem. 1999 Jul 23;274(30):21450–21456. doi: 10.1074/jbc.274.30.21450. [DOI] [PubMed] [Google Scholar]
  9. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grinthal A., Guidotti G. Substitution of His59 converts CD39 apyrase into an ADPase in a quaternary structure dependent manner. Biochemistry. 2000 Jan 11;39(1):9–16. doi: 10.1021/bi991751k. [DOI] [PubMed] [Google Scholar]
  11. Handa M., Guidotti G. Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum). Biochem Biophys Res Commun. 1996 Jan 26;218(3):916–923. doi: 10.1006/bbrc.1996.0162. [DOI] [PubMed] [Google Scholar]
  12. Heine P., Braun N., Heilbronn A., Zimmermann H. Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. Eur J Biochem. 1999 May;262(1):102–107. doi: 10.1046/j.1432-1327.1999.00347.x. [DOI] [PubMed] [Google Scholar]
  13. Hirschberg C. B., Snider M. D. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1987;56:63–87. doi: 10.1146/annurev.bi.56.070187.000431. [DOI] [PubMed] [Google Scholar]
  14. Kaczmarek E., Koziak K., Sévigny J., Siegel J. B., Anrather J., Beaudoin A. R., Bach F. H., Robson S. C. Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem. 1996 Dec 20;271(51):33116–33122. doi: 10.1074/jbc.271.51.33116. [DOI] [PubMed] [Google Scholar]
  15. Kegel B., Braun N., Heine P., Maliszewski C. R., Zimmermann H. An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacology. 1997 Sep;36(9):1189–1200. doi: 10.1016/s0028-3908(97)00115-9. [DOI] [PubMed] [Google Scholar]
  16. Kirley T. L. Complementary DNA cloning and sequencing of the chicken muscle ecto-ATPase. Homology with the lymphoid cell activation antigen CD39. J Biol Chem. 1997 Jan 10;272(2):1076–1081. doi: 10.1074/jbc.272.2.1076. [DOI] [PubMed] [Google Scholar]
  17. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  18. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  19. Mateo J., Harden T. K., Boyer J. L. Functional expression of a cDNA encoding a human ecto-ATPase. Br J Pharmacol. 1999 Sep;128(2):396–402. doi: 10.1038/sj.bjp.0702805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mulero J. J., Yeung G., Nelken S. T., Ford J. E. CD39-L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates. J Biol Chem. 1999 Jul 16;274(29):20064–20067. doi: 10.1074/jbc.274.29.20064. [DOI] [PubMed] [Google Scholar]
  21. Neary J. T., Rathbone M. P., Cattabeni F., Abbracchio M. P., Burnstock G. Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci. 1996 Jan;19(1):13–18. doi: 10.1016/0166-2236(96)81861-3. [DOI] [PubMed] [Google Scholar]
  22. Perez M., Hirschberg C. B. Topography of glycosylation reactions in the rough endoplasmic reticulum membrane. J Biol Chem. 1986 May 25;261(15):6822–6830. [PubMed] [Google Scholar]
  23. Schulte am Esch J., 2nd, Sévigny J., Kaczmarek E., Siegel J. B., Imai M., Koziak K., Beaudoin A. R., Robson S. C. Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity. Biochemistry. 1999 Feb 23;38(8):2248–2258. doi: 10.1021/bi982426k. [DOI] [PubMed] [Google Scholar]
  24. Smith T. M., Jr, Kirley T. L., Hennessey T. M. A soluble ecto-ATPase from Tetrahymena thermophila: purification and similarity to the membrane-bound ecto-ATPase of smooth muscle. Arch Biochem Biophys. 1997 Jan 15;337(2):351–359. doi: 10.1006/abbi.1996.9779. [DOI] [PubMed] [Google Scholar]
  25. Smith T. M., Kirley T. L. Cloning, sequencing, and expression of a human brain ecto-apyrase related to both the ecto-ATPases and CD39 ecto-apyrases1. Biochim Biophys Acta. 1998 Jul 28;1386(1):65–78. doi: 10.1016/s0167-4838(98)00063-6. [DOI] [PubMed] [Google Scholar]
  26. Smith T. M., Kirley T. L. Site-directed mutagenesis of a human brain ecto-apyrase: evidence that the E-type ATPases are related to the actin/heat shock 70/sugar kinase superfamily. Biochemistry. 1999 Jan 5;38(1):321–328. doi: 10.1021/bi9820457. [DOI] [PubMed] [Google Scholar]
  27. Smith T. M., Lewis Carl S. A., Kirley T. L. Mutagenesis of two conserved tryptophan residues of the E-type ATPases: inactivation and conversion of an ecto-apyrase to an ecto-NTPase. Biochemistry. 1999 May 4;38(18):5849–5857. doi: 10.1021/bi990171k. [DOI] [PubMed] [Google Scholar]
  28. Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
  29. Trombetta E. S., Helenius A. Glycoprotein reglucosylation and nucleotide sugar utilization in the secretory pathway: identification of a nucleoside diphosphatase in the endoplasmic reticulum. EMBO J. 1999 Jun 15;18(12):3282–3292. doi: 10.1093/emboj/18.12.3282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vasconcelos E. G., Ferreira S. T., Carvalho T. M., Souza W., Kettlun A. M., Mancilla M., Valenzuela M. A., Verjovski-Almeida S. Partial purification and immunohistochemical localization of ATP diphosphohydrolase from Schistosoma mansoni. Immunological cross-reactivities with potato apyrase and Toxoplasma gondii nucleoside triphosphate hydrolase. J Biol Chem. 1996 Sep 6;271(36):22139–22145. doi: 10.1074/jbc.271.36.22139. [DOI] [PubMed] [Google Scholar]
  31. Wang T. F., Guidotti G. CD39 is an ecto-(Ca2+,Mg2+)-apyrase. J Biol Chem. 1996 Apr 26;271(17):9898–9901. [PubMed] [Google Scholar]
  32. Wang T. F., Guidotti G. Golgi localization and functional expression of human uridine diphosphatase. J Biol Chem. 1998 May 1;273(18):11392–11399. doi: 10.1074/jbc.273.18.11392. [DOI] [PubMed] [Google Scholar]
  33. Zhong X., Guidotti G. A yeast Golgi E-type ATPase with an unusual membrane topology. J Biol Chem. 1999 Nov 12;274(46):32704–32711. doi: 10.1074/jbc.274.46.32704. [DOI] [PubMed] [Google Scholar]
  34. Zimmermann H. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol. 1996 Aug;49(6):589–618. doi: 10.1016/0301-0082(96)00026-3. [DOI] [PubMed] [Google Scholar]
  35. Zimmermann H., Braun N. Ecto-nucleotidases--molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res. 1999;120:371–385. [PubMed] [Google Scholar]
  36. Zimmermann H. Two novel families of ectonucleotidases: molecular structures, catalytic properties and a search for function. Trends Pharmacol Sci. 1999 Jun;20(6):231–236. doi: 10.1016/s0165-6147(99)01293-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES