Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Nov 1;351(Pt 3):677–682.

Cysteine residues in the C-terminus of the neutral- and basic-amino-acid transporter heavy-chain subunit contribute to functional properties of the system b(0,+)-type amino acid transporter.

G J Peter 1, T B Panova 1, G R Christie 1, P M Taylor 1
PMCID: PMC1221407  PMID: 11042122

Abstract

The neutral- and basic-amino-acid-transport glycoprotein NBAT (rBAT, D2) expressed in renal and jejunal brush-border membranes interacts with the b(0,+)AT permease to produce a heteromeric transporter effecting amino acid and cystine absorption. NBAT mutations result in type I cystinuria. The b(0,+)AT permease is presumed to be the catalytic subunit, but we have been investigating the possibility that cysteine residues within the C-terminus of NBAT are also important for expression of transport function. NBAT mutants were produced with combinations of Cys(664/671/683)-->Ala substitutions. Mutants with Cys(664)-->Ala show decreased arginine and cystine transport and specifically lose sensitivity to inhibition of transport by the thiol-group reagent N-ethylmaleimide (NEM). We suggest that the C-terminus of NBAT may have a direct role in the mechanism of System b(0,+) transport (the major transport activity defective in type I cystinuria) and that Cys(664) of NBAT is the major target for NEM-induced inactivation of the transport mechanism.

Full Text

The Full Text of this article is available as a PDF (183.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertran J., Werner A., Moore M. L., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5601–5605. doi: 10.1073/pnas.89.12.5601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Calonge M. J., Gasparini P., Chillarón J., Chillón M., Gallucci M., Rousaud F., Zelante L., Testar X., Dallapiccola B., Di Silverio F. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994 Apr;6(4):420–425. doi: 10.1038/ng0494-420. [DOI] [PubMed] [Google Scholar]
  3. Chairoungdua A., Segawa H., Kim J. Y., Miyamoto K., Haga H., Fukui Y., Mizoguchi K., Ito H., Takeda E., Endou H. Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J Biol Chem. 1999 Oct 8;274(41):28845–28848. doi: 10.1074/jbc.274.41.28845. [DOI] [PubMed] [Google Scholar]
  4. Chillarón J., Estévez R., Mora C., Wagner C. A., Suessbrich H., Lang F., Gelpí J. L., Testar X., Busch A. E., Zorzano A. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem. 1996 Jul 26;271(30):17761–17770. doi: 10.1074/jbc.271.30.17761. [DOI] [PubMed] [Google Scholar]
  5. Deora A. B., Ghosh R. N., Tate S. S. Progressive C-terminal deletions of the renal cystine transporter, NBAT, reveal a novel bimodal pattern of functional expression. J Biol Chem. 1998 Dec 4;273(49):32980–32987. doi: 10.1074/jbc.273.49.32980. [DOI] [PubMed] [Google Scholar]
  6. Devés R., Boyd C. A. Surface antigen CD98(4F2): not a single membrane protein, but a family of proteins with multiple functions. J Membr Biol. 2000 Feb 1;173(3):165–177. doi: 10.1007/s002320001017. [DOI] [PubMed] [Google Scholar]
  7. Egoshi K. I., Akakura K., Kodama T., Ito H. Identification of five novel SLC3A1 (rBAT) gene mutations in Japanese cystinuria. Kidney Int. 2000 Jan;57(1):25–32. doi: 10.1046/j.1523-1755.2000.00821.x. [DOI] [PubMed] [Google Scholar]
  8. Estévez R., Camps M., Rojas A. M., Testar X., Devés R., Hediger M. A., Zorzano A., Palacín M. The amino acid transport system y+L/4F2hc is a heteromultimeric complex. FASEB J. 1998 Oct;12(13):1319–1329. doi: 10.1096/fasebj.12.13.1319. [DOI] [PubMed] [Google Scholar]
  9. Feliubadaló L., Font M., Purroy J., Rousaud F., Estivill X., Nunes V., Golomb E., Centola M., Aksentijevich I., Kreiss Y. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet. 1999 Sep;23(1):52–57. doi: 10.1038/12652. [DOI] [PubMed] [Google Scholar]
  10. Mastroberardino L., Spindler B., Pfeiffer R., Skelly P. J., Loffing J., Shoemaker C. B., Verrey F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature. 1998 Sep 17;395(6699):288–291. doi: 10.1038/26246. [DOI] [PubMed] [Google Scholar]
  11. Miyamoto K., Segawa H., Tatsumi S., Katai K., Yamamoto H., Taketani Y., Haga H., Morita K., Takeda E. Effects of truncation of the COOH-terminal region of a Na+-independent neutral and basic amino acid transporter on amino acid transport in Xenopus oocytes. J Biol Chem. 1996 Jul 12;271(28):16758–16763. doi: 10.1074/jbc.271.28.16758. [DOI] [PubMed] [Google Scholar]
  12. Nakamura E., Sato M., Yang H., Miyagawa F., Harasaki M., Tomita K., Matsuoka S., Noma A., Iwai K., Minato N. 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem. 1999 Jan 29;274(5):3009–3016. doi: 10.1074/jbc.274.5.3009. [DOI] [PubMed] [Google Scholar]
  13. Palacín M., Estévez R., Bertran J., Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998 Oct;78(4):969–1054. doi: 10.1152/physrev.1998.78.4.969. [DOI] [PubMed] [Google Scholar]
  14. Peter G. J., Davidson I. G., Ahmed A., McIlroy L., Forrester A. R., Taylor P. M. Multiple components of arginine and phenylalanine transport induced in neutral and basic amino acid transporter-cRNA-injected Xenopus oocytes. Biochem J. 1996 Sep 15;318(Pt 3):915–922. doi: 10.1042/bj3180915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peter G. J., Davies A., Watt P. W., Birrell J., Taylor P. M. Interactions between the thiol-group reagent N-ethylmaleimide and neutral and basic amino acid transporter-related amino acid transport. Biochem J. 1999 Oct 1;343(Pt 1):169–176. [PMC free article] [PubMed] [Google Scholar]
  16. Pfeiffer R., Loffing J., Rossier G., Bauch C., Meier C., Eggermann T., Loffing-Cueni D., Kühn L. C., Verrey F. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell. 1999 Dec;10(12):4135–4147. doi: 10.1091/mbc.10.12.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pfeiffer R., Spindler B., Loffing J., Skelly P. J., Shoemaker C. B., Verrey F. Functional heterodimeric amino acid transporters lacking cysteine residues involved in disulfide bond. FEBS Lett. 1998 Nov 13;439(1-2):157–162. doi: 10.1016/s0014-5793(98)01359-3. [DOI] [PubMed] [Google Scholar]
  18. Rajan D. P., Huang W., Kekuda R., George R. L., Wang J., Conway S. J., Devoe L. D., Leibach F. H., Prasad P. D., Ganapathy V. Differential influence of the 4F2 heavy chain and the protein related to b(0,+) amino acid transport on substrate affinity of the heteromeric b(0,+) amino acid transporter. J Biol Chem. 2000 May 12;275(19):14331–14335. doi: 10.1074/jbc.275.19.14331. [DOI] [PubMed] [Google Scholar]
  19. Rajan D. P., Kekuda R., Huang W., Wang H., Devoe L. D., Leibach F. H., Prasad P. D., Ganapathy V. Cloning and expression of a b(0,+)-like amino acid transporter functioning as a heterodimer with 4F2hc instead of rBAT. A new candidate gene for cystinuria. J Biol Chem. 1999 Oct 8;274(41):29005–29010. doi: 10.1074/jbc.274.41.29005. [DOI] [PubMed] [Google Scholar]
  20. Sato H., Tamba M., Ishii T., Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999 Apr 23;274(17):11455–11458. doi: 10.1074/jbc.274.17.11455. [DOI] [PubMed] [Google Scholar]
  21. Segawa H., Miyamoto K., Ogura Y., Haga H., Morita K., Katai K., Tatsumi S., Nii T., Taketani Y., Takeda E. Cloning, functional expression and dietary regulation of the mouse neutral and basic amino acid transporter (NBAT). Biochem J. 1997 Dec 1;328(Pt 2):657–664. doi: 10.1042/bj3280657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tate S. S., Yan N., Udenfriend S. Expression cloning of a Na(+)-independent neutral amino acid transporter from rat kidney. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):1–5. doi: 10.1073/pnas.89.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Verrey F., Jack D. L., Paulsen I. T., Saier M. H., Jr, Pfeiffer R. New glycoprotein-associated amino acid transporters. J Membr Biol. 1999 Dec 1;172(3):181–192. doi: 10.1007/s002329900595. [DOI] [PubMed] [Google Scholar]
  24. Wang Y., Tate S. S. Oligomeric structure of a renal cystine transporter: implications in cystinuria. FEBS Lett. 1995 Jul 17;368(2):389–392. doi: 10.1016/0014-5793(95)00685-3. [DOI] [PubMed] [Google Scholar]
  25. Wells R. G., Hediger M. A. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5596–5600. doi: 10.1073/pnas.89.12.5596. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES