Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Nov 1;351(Pt 3):683–686.

Different receptors use inositol trisphosphate to mobilize Ca(2+) from different intracellular pools.

A D Short 1, G P Winston 1, C W Taylor 1
PMCID: PMC1221408  PMID: 11042123

Abstract

In cells expressing different receptors linked to Ins(1,4,5)P(3) formation, maximal stimulation of any one of them often releases all the Ins(1,4,5)P(3)-sensitive Ca(2+) stores, suggesting that Ins(1,4, 5)P(3) is used similarly by many receptors. In single HEK-293 cells, ATP and carbamylcholine (CCh) stimulated Ca(2+) release from intracellular stores via a pathway that was entirely dependent on Ins(1,4,5)P(3). After stimulation with maximal concentrations of ATP or CCh in Ca(2+)-free medium, there was no response to a second stimulation with the same agonist, indicating that each agonist had emptied the Ins(1,4,5)P(3)-sensitive stores to which it had access. However, the Ca(2+) release evoked by the second agonist was unaffected by prior stimulation with the first. We conclude that Ins(1,4,5)P(3) mediates the effects of both receptors, but Ins(1,4, 5)P(3) is more versatile than hitherto supposed, because the spatial organization of the signalling pathways apparently allows Ins(1,4, 5)P(3) made in response to each agonist to interact with different Ins(1,4,5)P(3) receptors.

Full Text

The Full Text of this article is available as a PDF (134.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Elementary and global aspects of calcium signalling. J Physiol. 1997 Mar 1;499(Pt 2):291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Bleasdale J. E., Thakur N. R., Gremban R. S., Bundy G. L., Fitzpatrick F. A., Smith R. J., Bunting S. Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils. J Pharmacol Exp Ther. 1990 Nov;255(2):756–768. [PubMed] [Google Scholar]
  4. Colledge M., Scott J. D. AKAPs: from structure to function. Trends Cell Biol. 1999 Jun;9(6):216–221. doi: 10.1016/s0962-8924(99)01558-5. [DOI] [PubMed] [Google Scholar]
  5. Csordás G., Thomas A. P., Hajnóczky G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J. 1999 Jan 4;18(1):96–108. doi: 10.1093/emboj/18.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frelin C., Breittmayer J. P., Vigne P. ADP induces inositol phosphate-independent intracellular Ca2+ mobilization in brain capillary endothelial cells. J Biol Chem. 1993 Apr 25;268(12):8787–8792. [PubMed] [Google Scholar]
  7. Genazzani A. A., Galione A. A Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol Sci. 1997 Apr;18(4):108–110. doi: 10.1016/s0165-6147(96)01036-x. [DOI] [PubMed] [Google Scholar]
  8. Golovina V. A., Blaustein M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997 Mar 14;275(5306):1643–1648. doi: 10.1126/science.275.5306.1643. [DOI] [PubMed] [Google Scholar]
  9. Gómez A. M., Valdivia H. H., Cheng H., Lederer M. R., Santana L. F., Cannell M. B., McCune S. A., Altschuld R. A., Lederer W. J. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 1997 May 2;276(5313):800–806. doi: 10.1126/science.276.5313.800. [DOI] [PubMed] [Google Scholar]
  10. Lee H. C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997 Oct;77(4):1133–1164. doi: 10.1152/physrev.1997.77.4.1133. [DOI] [PubMed] [Google Scholar]
  11. Mathias R. S., Mikoshiba K., Michikawa T., Miyawaki A., Ives H. E. IP3 receptor blockade fails to prevent intracellular Ca2+ release by ET-1 and alpha-thrombin. Am J Physiol. 1998 Jun;274(6 Pt 1):C1456–C1465. doi: 10.1152/ajpcell.1998.274.6.C1456. [DOI] [PubMed] [Google Scholar]
  12. Meyer zu Heringdorf D., Lass H., Alemany R., Laser K. T., Neumann E., Zhang C., Schmidt M., Rauen U., Jakobs K. H., van Koppen C. J. Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J. 1998 May 15;17(10):2830–2837. doi: 10.1093/emboj/17.10.2830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paradiso A. M., Mason S. J., Lazarowski E. R., Boucher R. C. Membrane-restricted regulation of Ca2+ release and influx in polarized epithelia. Nature. 1995 Oct 19;377(6550):643–646. doi: 10.1038/377643a0. [DOI] [PubMed] [Google Scholar]
  14. Pawson T., Scott J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997 Dec 19;278(5346):2075–2080. doi: 10.1126/science.278.5346.2075. [DOI] [PubMed] [Google Scholar]
  15. Petersen O. H., Cancela J. M. New Ca2+-releasing messengers: are they important in the nervous system? Trends Neurosci. 1999 Nov;22(11):488–495. doi: 10.1016/s0166-2236(99)01456-3. [DOI] [PubMed] [Google Scholar]
  16. Sanchez-Bueno A., Cobbold P. H. Agonist-specificity in the role of Ca(2+)-induced Ca2+ release in hepatocyte Ca2+ oscillations. Biochem J. 1993 Apr 1;291(Pt 1):169–172. doi: 10.1042/bj2910169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scott K., Zuker C. TRP, TRPL and trouble in photoreceptor cells. Curr Opin Neurobiol. 1998 Jun;8(3):383–388. doi: 10.1016/s0959-4388(98)80065-2. [DOI] [PubMed] [Google Scholar]
  18. Seuwen K., Boddeke H. G. Heparin-insensitive calcium release from intracellular stores triggered by the recombinant human parathyroid hormone receptor. Br J Pharmacol. 1995 Apr;114(8):1613–1620. doi: 10.1111/j.1476-5381.1995.tb14947.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Short A. D., Taylor C. W. Parathyroid hormone controls the size of the intracellular Ca(2+) stores available to receptors linked to inositol trisphosphate formation. J Biol Chem. 2000 Jan 21;275(3):1807–1813. doi: 10.1074/jbc.275.3.1807. [DOI] [PubMed] [Google Scholar]
  20. Sutherland E. W. Studies on the mechanism of hormone action. Science. 1972 Aug 4;177(4047):401–408. doi: 10.1126/science.177.4047.401. [DOI] [PubMed] [Google Scholar]
  21. Tong J., Du G. G., Chen S. R., MacLennan D. H. HEK-293 cells possess a carbachol- and thapsigargin-sensitive intracellular Ca2+ store that is responsive to stop-flow medium changes and insensitive to caffeine and ryanodine. Biochem J. 1999 Oct 1;343(Pt 1):39–44. [PMC free article] [PubMed] [Google Scholar]
  22. Tortorici G., Zhang B. X., Xu X., Muallem S. Compartmentalization of Ca2+ signaling and Ca2+ pools in pancreatic acini. Implications for the quantal behavior of Ca2+ release. J Biol Chem. 1994 Nov 25;269(47):29621–29628. [PubMed] [Google Scholar]
  23. Tsunoda S., Sierralta J., Sun Y., Bodner R., Suzuki E., Becker A., Socolich M., Zuker C. S. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature. 1997 Jul 17;388(6639):243–249. doi: 10.1038/40805. [DOI] [PubMed] [Google Scholar]
  24. Tu J. C., Xiao B., Yuan J. P., Lanahan A. A., Leoffert K., Li M., Linden D. J., Worley P. F. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron. 1998 Oct;21(4):717–726. doi: 10.1016/s0896-6273(00)80589-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES