Abstract
In rat uterine stromal cells (U(III) cells), docosahexaenoic acid (DHA) was esterified extensively in alkenylacyl-glycerophosphoethanolamine and in an unknown phospholipid accounting for only 0.7% of the total phospholipid. The latter was identified as a bis(monoacylglycerol) phosphate (BMP) using MS. Incorporation studies using C(18:3)n-3 and C(20:5)n-3 demonstrated that BMP had a high specificity to incorporate DHA and C(22) polyunsaturated fatty acids of the (n-3) series. By contrast, polyunsaturated fatty acids of the (n-6) series were never incorporated into BMP. Incubation of U(III) cells with 5 microM DHA for 24 h increased the DHA content of BMP from 36 to 71% of the total acyl chains. [(3)H]DHA-labelled BMP purified as a single TLC spot was resolved into three peaks using HPLC. These peaks were also observed when cells were labelled with [(3)H]phosphatidylglycerol, an exogenous BMP precursor, and with [(33)P]P(i). Electrospray MS of BMP from control cells showed that the first two peaks contained the same molecular species (mainly C(22:6)n-3/C(22:6)n-3 and C(18:1)n-9/C(22:6)n-3) while the third peak mainly contained the C(18:1)n-9/C(18:1)n-9 species. The stereoconfiguration analysis of the compounds revealed an sn-glycero-3-phospho-1'-sn-glycerol configuration for the first peak and sn-glycero-1-phospho-1'-sn-glycerol configurations for the other two. BMP from rat testis was used to establish the positions of the acyl groups. More than 70% of its acyl chains were C(22:5) n-6. It was separated on HPLC into three peaks that co-migrated with the three peaks of BMP from U(III) cells. Lipase activity and NMR analysis of the second peak showed that fatty acids esterified the primary alcohol group on each glycerol moiety. We conclude that the three peaks are stereoisomeric compounds with different acyl-chain locations and may be the result of different metabolic fates depending on subcellular localization.
Full Text
The Full Text of this article is available as a PDF (199.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amidon B., Brown A., Waite M. Transacylase and phospholipases in the synthesis of bis(monoacylglycero)phosphate. Biochemistry. 1996 Nov 5;35(44):13995–14002. doi: 10.1021/bi961164o. [DOI] [PubMed] [Google Scholar]
- Amidon B., Schmitt J. D., Thuren T., King L., Waite M. Biosynthetic conversion of phosphatidylglycerol to sn-1:sn-1' bis(monoacylglycerol) phosphate in a macrophage-like cell line. Biochemistry. 1995 Apr 25;34(16):5554–5560. doi: 10.1021/bi00016a029. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Blank M. L., Robinson M., Fitzgerald V., Snyder F. Novel quantitative method for determination of molecular species of phospholipids and diglycerides. J Chromatogr. 1984 Aug 31;298(3):473–482. doi: 10.1016/s0021-9673(01)92744-x. [DOI] [PubMed] [Google Scholar]
- Brotherus J., Renkonen O., Fischer W., Herrmann J. Novel stereoconfiguration in lyso-bis-phosphatidic acid of cultured BHK-cells. Chem Phys Lipids. 1974 Oct;13(2):178–182. doi: 10.1016/0009-3084(74)90034-6. [DOI] [PubMed] [Google Scholar]
- Brotherus J., Renkonen O. Subcellular distributions of lipids in cultured BHK cells: evidence for the enrichment of lysobisphosphatidic acid and neutral lipids in lysosomes. J Lipid Res. 1977 Mar;18(2):191–202. [PubMed] [Google Scholar]
- Cochran F. R., Connor J. R., Roddick V. L., Waite B. M. Lyso(bis)phosphatidic acid: a novel source of arachidonic acid for oxidative metabolism by rabbit alveolar macrophages. Biochem Biophys Res Commun. 1985 Jul 31;130(2):800–806. doi: 10.1016/0006-291x(85)90487-5. [DOI] [PubMed] [Google Scholar]
- Cochran F. R., Roddick V. L., Connor J. R., Thornburg J. T., Waite M. Regulation of arachidonic acid metabolism in resident and BCG-activated alveolar macrophages: role of lyso(bis)phosphatidic acid. J Immunol. 1987 Mar 15;138(6):1877–1883. [PubMed] [Google Scholar]
- Cohen H., Pageaux J. F., Melinand C., Fayard J. M., Laugier C. Normal rat uterine stromal cells in continuous culture: characterization and progestin regulation of growth. Eur J Cell Biol. 1993 Jun;61(1):116–125. [PubMed] [Google Scholar]
- Croset M., Brossard N., Polette A., Lagarde M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J. 2000 Jan 1;345(Pt 1):61–67. [PMC free article] [PubMed] [Google Scholar]
- Fayard J. M., Tessier C., Cohen H., Lagarde M., Pageaux J. F., Laugier C. Phospholipase A2 inhibitors regulate the proliferation of normal uterine cells. Eur J Pharmacol. 1994 Jan 14;251(2-3):281–289. doi: 10.1016/0014-2999(94)90410-3. [DOI] [PubMed] [Google Scholar]
- Hendrickson H. S., Kotz K. J., Hendrickson E. K. Evaluation of fluorescent and colored phosphatidylcholine analogs as substrates for the assay of phospholipase A2. Anal Biochem. 1990 Feb 15;185(1):80–83. doi: 10.1016/0003-2697(90)90258-b. [DOI] [PubMed] [Google Scholar]
- Heravi J., Waite M. Transacylase formation of bis(monoacylglycerol)phosphate. Biochim Biophys Acta. 1999 Mar 25;1437(3):277–286. doi: 10.1016/s1388-1981(99)00021-9. [DOI] [PubMed] [Google Scholar]
- Holbrook P. G., Pannell L. K., Murata Y., Daly J. W. Bis(monoacylglycero)phosphate from PC12 cells, a phospholipid that can comigrate with phosphatidic acid: molecular species analysis by fast atom bombardment mass spectrometry. Biochim Biophys Acta. 1992 May 8;1125(3):330–334. doi: 10.1016/0005-2760(92)90063-2. [DOI] [PubMed] [Google Scholar]
- Huterer S. J., Hostetler K. Y., Gardner M. F., Wherrett J. R. Lysosomal phosphatidylcholine: bis(monoacylglycero)phosphate acyltransferase: specificity for the sn-1 fatty acid of the donor and co-purification with phospholipase A1. Biochim Biophys Acta. 1993 Apr 7;1167(2):204–210. doi: 10.1016/0005-2760(93)90163-4. [DOI] [PubMed] [Google Scholar]
- Huterer S. J., Wherrett J. R. Formation of bis(monoacylglycero)phosphate by a macrophage transacylase. Biochim Biophys Acta. 1989 Jan 23;1001(1):68–75. doi: 10.1016/0005-2760(89)90308-1. [DOI] [PubMed] [Google Scholar]
- Huterer S., Wherrett J. R. Incorporation of polyunsaturated fatty acids into bis(monoacylglycero)phosphate and other lipids of macrophages and of fibroblasts from control and Niemann-Pick patients. Biochim Biophys Acta. 1986 Apr 15;876(2):318–326. doi: 10.1016/0005-2760(86)90290-0. [DOI] [PubMed] [Google Scholar]
- Huterer S., Wherrett J. Metabolism of bis(monoacylglycero)phosphate in macrophages. J Lipid Res. 1979 Nov;20(8):966–973. [PubMed] [Google Scholar]
- Joutti A., Brotherus J., Renkonen O., Laine R., Fischer W. The stereochemical configuration of lysobisphosphatidic acid from rat liver, rabbit lung and pig lung. Biochim Biophys Acta. 1976 Nov 19;450(2):206–209. doi: 10.1016/0005-2760(76)90092-8. [DOI] [PubMed] [Google Scholar]
- Joutti A., Renkonen O. The stereoconfiguration of bis(monoacylglycero)phosphate synthesized in vitro in lysosomes of rat liver: comparison with the natural lipid. J Lipid Res. 1979 Sep;20(7):840–847. [PubMed] [Google Scholar]
- Joutti A. The stereoconfiguration of newly formed molecules of bis(monoacylglycero)phosphate in BHK cells. Biochim Biophys Acta. 1979 Oct 26;575(1):10–15. doi: 10.1016/0005-2760(79)90125-5. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Beuchat M. H., Lindsay M., Frias S., Palmiter R. D., Sakuraba H., Parton R. G., Gruenberg J. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol. 1999 Jun;1(2):113–118. doi: 10.1038/10084. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Stang E., Fang K. S., de Moerloose P., Parton R. G., Gruenberg J. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature. 1998 Mar 12;392(6672):193–197. doi: 10.1038/32440. [DOI] [PubMed] [Google Scholar]
- Lehmann W. D., Koester M., Erben G., Keppler D. Characterization and quantification of rat bile phosphatidylcholine by electrospray-tandem mass spectrometry. Anal Biochem. 1997 Mar 1;246(1):102–110. doi: 10.1006/abio.1996.9941. [DOI] [PubMed] [Google Scholar]
- Mason R. J., Stossel T. P., Vaughan M. Lipids of alveolar macrophages, polymorphonuclear leukocytes, and their phagocytic vesicles. J Clin Invest. 1972 Sep;51(9):2399–2407. doi: 10.1172/JCI107052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pageaux J. F., Bechoua S., Bonnot G., Fayard J. M., Cohen H., Lagarde M., Laugier C. Biogenesis and metabolic fate of docosahexaenoic and arachidonic acids in rat uterine stromal cells in culture. Arch Biochem Biophys. 1996 Mar 1;327(1):142–150. doi: 10.1006/abbi.1996.0102. [DOI] [PubMed] [Google Scholar]
- Paltauf F. Preparation of choline and ethanolamine plasmalogens by enzymatic hydrolysis of the accompanying diacyl analogs. Lipids. 1978 Feb;13(2):165–166. doi: 10.1007/BF02533261. [DOI] [PubMed] [Google Scholar]
- Retterstøl K., Haugen T. B., Christophersen B. O. The pathway from arachidonic to docosapentaenoic acid (20:4n-6 to 22:5n-6) and from eicosapentaenoic to docosahexaenoic acid (20:5n-3 to 22:6n-3) studied in testicular cells from immature rats. Biochim Biophys Acta. 2000 Jan 3;1483(1):119–131. doi: 10.1016/s1388-1981(99)00166-3. [DOI] [PubMed] [Google Scholar]
- Rouser G., Kritchevsky G., Knudson A. G., Jr, Simon G. Accumulation of a glycerolphospholipid in classical niemann-pick disease. Lipids. 1968 May;3(3):287–290. doi: 10.1007/BF02531203. [DOI] [PubMed] [Google Scholar]
- Somerharju P., Renkonen O. Conversion of phosphatidylglycerol lipids to bis(monoacylglycero)phosphate in vivo. Biochim Biophys Acta. 1980 Jun 23;618(3):407–419. doi: 10.1016/0005-2760(80)90259-3. [DOI] [PubMed] [Google Scholar]
- Tessier C., Fayard J. M., Cohen H., Pageaux J. F., Lagarde M., Laugier C. Docosahexaenoic acid is a potent inhibitor of rat uterine stromal cell proliferation. Biochem Biophys Res Commun. 1995 Feb 27;207(3):1015–1021. doi: 10.1006/bbrc.1995.1286. [DOI] [PubMed] [Google Scholar]
- Thornburg T., Miller C., Thuren T., King L., Waite M. Glycerol reorientation during the conversion of phosphatidylglycerol to bis(monoacylglycerol)phosphate in macrophage-like RAW 264.7 cells. J Biol Chem. 1991 Apr 15;266(11):6834–6840. [PubMed] [Google Scholar]
- Tjiong H. B., Lepthin J., Debuch H. Lysosomal phospholipids from rat liver after treatment with different drugs. Hoppe Seylers Z Physiol Chem. 1978 Jan;359(1):63–69. doi: 10.1515/bchm.1978.359.1.63. [DOI] [PubMed] [Google Scholar]
- Waite M., King L., Thornburg T., Osthoff G., Thuren T. Y. Metabolism of phosphatidylglycerol and bis(monoacylglycero)-phosphate in macrophage subcellular fractions. J Biol Chem. 1990 Dec 15;265(35):21720–21726. [PubMed] [Google Scholar]
- Waite M., Roddick V., Thornburg T., King L., Cochran F. Conversion of phosphatidylglycerol to lyso(bis)phosphatidic acid by alveolar macrophages. FASEB J. 1987 Oct;1(4):318–325. doi: 10.1096/fasebj.1.4.3653583. [DOI] [PubMed] [Google Scholar]
- Wherrett J. R., Huterer S. Bis-(monoacylglyceryl)-phosphate of rat and human liver: fatty acid composition and NMR spectroscopy. Lipids. 1973 Sep;8(9):531–533. doi: 10.1007/BF02531989. [DOI] [PubMed] [Google Scholar]
- Wherrett J. R., Huterer S. Enrichment of bis-(monoacylglyceryl) phosphate in lysosomes from rat liver. J Biol Chem. 1972 Jul 10;247(13):4114–4120. [PubMed] [Google Scholar]
- Yamamoto A., Adachi S., Kitani T., Shinji Y., Seki K. Drug-induced lipidosis in human cases and in animal experiments. Accumulation of an acidic glycerophospholipid. J Biochem. 1971 Mar;69(3):613–615. [PubMed] [Google Scholar]