Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Nov 1;351(Pt 3):805–810.

Endurance training increases stimulation of uncoupling of skeletal muscle mitochondria in humans by non-esterified fatty acids: an uncoupling-protein-mediated effect?

M Tonkonogi 1, A Krook 1, B Walsh 1, K Sahlin 1
PMCID: PMC1221422  PMID: 11042137

Abstract

Uncoupled respiration (UCR) is an essential property of muscle mitochondria and has several functions in the cell. We hypothesized that endurance training may alter the magnitude and properties of UCR in human muscle. Isolated mitochondria from muscle biopsies taken before and after 6 weeks of endurance exercise training (n=8) were analysed for UCR. To investigate the role of uncoupling protein 2 (UCP2) and UCP3 in UCR, the sensitivity of UCR to UCP-regulating ligands (non-esterified fatty acids and purine nucleotides) and UCP2 and UCP3 mRNA expression in muscle were examined. Oleate increased the mitochondrial oxygen consumption rate, an effect that was not attenuated by GDP and/or cyclosporin A. The effect of oleate was significantly greater after compared with before training. Training had no effect on UCP2 or UCP3 mRNA levels, but after training the relative increase in respiration rate induced by oleate was positively correlated with the UCP2 mRNA level. In conclusion, we show that the sensitivity of UCR to non-esterified fatty acids is up-regulated by endurance training. This suggests that endurance training causes intrinsic changes in mitochondrial function, which may enhance the potential for regulation of aerobic energy production, prevent excess free radical generation and contribute to a higher basal metabolic rate.

Full Text

The Full Text of this article is available as a PDF (121.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barre H., Geloen A., Chatonnet J., Dittmar A., Rouanet J. L. Potentiated muscular thermogenesis in cold-acclimated muscovy duckling. Am J Physiol. 1985 Nov;249(5 Pt 2):R533–R538. doi: 10.1152/ajpregu.1985.249.5.R533. [DOI] [PubMed] [Google Scholar]
  2. Barré H., Nedergaard J., Cannon B. Increased respiration in skeletal muscle mitochondria from cold-acclimated ducklings: uncoupling effects of free fatty acids. Comp Biochem Physiol B. 1986;85(2):343–348. doi: 10.1016/0305-0491(86)90010-6. [DOI] [PubMed] [Google Scholar]
  3. Boss O., Samec S., Desplanches D., Mayet M. H., Seydoux J., Muzzin P., Giacobino J. P. Effect of endurance training on mRNA expression of uncoupling proteins 1, 2, and 3 in the rat. FASEB J. 1998 Mar;12(3):335–339. doi: 10.1096/fasebj.12.3.335. [DOI] [PubMed] [Google Scholar]
  4. Boss O., Samec S., Paoloni-Giacobino A., Rossier C., Dulloo A., Seydoux J., Muzzin P., Giacobino J. P. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997 May 12;408(1):39–42. doi: 10.1016/s0014-5793(97)00384-0. [DOI] [PubMed] [Google Scholar]
  5. Brand M. D., Chien L. F., Ainscow E. K., Rolfe D. F., Porter R. K. The causes and functions of mitochondrial proton leak. Biochim Biophys Acta. 1994 Aug 30;1187(2):132–139. doi: 10.1016/0005-2728(94)90099-x. [DOI] [PubMed] [Google Scholar]
  6. Brustovetsky N., Klingenberg M. The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl. J Biol Chem. 1994 Nov 4;269(44):27329–27336. [PubMed] [Google Scholar]
  7. Cortright R. N., Zheng D., Jones J. P., Fluckey J. D., DiCarlo S. E., Grujic D., Lowell B. B., Dohm G. L. Regulation of skeletal muscle UCP-2 and UCP-3 gene expression by exercise and denervation. Am J Physiol. 1999 Jan;276(1 Pt 1):E217–E221. doi: 10.1152/ajpendo.1999.276.1.E217. [DOI] [PubMed] [Google Scholar]
  8. Echtay K. S., Liu Q., Caskey T., Winkler E., Frischmuth K., Bienengräber M., Klingenberg M. Regulation of UCP3 by nucleotides is different from regulation of UCP1. FEBS Lett. 1999 Apr 30;450(1-2):8–12. doi: 10.1016/s0014-5793(99)00460-3. [DOI] [PubMed] [Google Scholar]
  9. Fleury C., Neverova M., Collins S., Raimbault S., Champigny O., Levi-Meyrueis C., Bouillaud F., Seldin M. F., Surwit R. S., Ricquier D. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997 Mar;15(3):269–272. doi: 10.1038/ng0397-269. [DOI] [PubMed] [Google Scholar]
  10. Garlid K. D., Orosz D. E., Modrianský M., Vassanelli S., Jezek P. On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem. 1996 Feb 2;271(5):2615–2620. doi: 10.1074/jbc.271.5.2615. [DOI] [PubMed] [Google Scholar]
  11. Gong D. W., He Y., Karas M., Reitman M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem. 1997 Sep 26;272(39):24129–24132. doi: 10.1074/jbc.272.39.24129. [DOI] [PubMed] [Google Scholar]
  12. Gong D. W., Monemdjou S., Gavrilova O., Leon L. R., Marcus-Samuels B., Chou C. J., Everett C., Kozak L. P., Li C., Deng C. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem. 2000 May 26;275(21):16251–16257. doi: 10.1074/jbc.M910177199. [DOI] [PubMed] [Google Scholar]
  13. Hagen T., Zhang C. Y., Slieker L. J., Chung W. K., Leibel R. L., Lowell B. B. Assessment of uncoupling activity of the human uncoupling protein 3 short form and three mutants of the uncoupling protein gene using a yeast heterologous expression system. FEBS Lett. 1999 Jul 9;454(3):201–206. doi: 10.1016/s0014-5793(99)00811-x. [DOI] [PubMed] [Google Scholar]
  14. Hermesh O., Kalderon B., Bar-Tana J. Mitochondria uncoupling by a long chain fatty acyl analogue. J Biol Chem. 1998 Feb 13;273(7):3937–3942. doi: 10.1074/jbc.273.7.3937. [DOI] [PubMed] [Google Scholar]
  15. Hjeltnes N., Fernström M., Zierath J. R., Krook A. Regulation of UCP2 and UCP3 by muscle disuse and physical activity in tetraplegic subjects. Diabetologia. 1999 Jul;42(7):826–830. doi: 10.1007/s001250051233. [DOI] [PubMed] [Google Scholar]
  16. Jabůrek M., Varecha M., Gimeno R. E., Dembski M., Jezek P., Zhang M., Burn P., Tartaglia L. A., Garlid K. D. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem. 1999 Sep 10;274(37):26003–26007. doi: 10.1074/jbc.274.37.26003. [DOI] [PubMed] [Google Scholar]
  17. Kiens B., Roemen T. H., van der Vusse G. J. Muscular long-chain fatty acid content during graded exercise in humans. Am J Physiol. 1999 Feb;276(2 Pt 1):E352–E357. doi: 10.1152/ajpendo.1999.276.2.E352. [DOI] [PubMed] [Google Scholar]
  18. Klingenberg M., Huang S. G. Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta. 1999 Jan 8;1415(2):271–296. doi: 10.1016/s0005-2736(98)00232-6. [DOI] [PubMed] [Google Scholar]
  19. Krook A., Digby J., O'Rahilly S., Zierath J. R., Wallberg-Henriksson H. Uncoupling protein 3 is reduced in skeletal muscle of NIDDM patients. Diabetes. 1998 Sep;47(9):1528–1531. doi: 10.2337/diabetes.47.9.1528. [DOI] [PubMed] [Google Scholar]
  20. Monemdjou S., Kozak L. P., Harper M. E. Mitochondrial proton leak in brown adipose tissue mitochondria of Ucp1-deficient mice is GDP insensitive. Am J Physiol. 1999 Jun;276(6 Pt 1):E1073–E1082. doi: 10.1152/ajpendo.1999.276.6.E1073. [DOI] [PubMed] [Google Scholar]
  21. Nicholls D. G., Locke R. M. Thermogenic mechanisms in brown fat. Physiol Rev. 1984 Jan;64(1):1–64. doi: 10.1152/physrev.1984.64.1.1. [DOI] [PubMed] [Google Scholar]
  22. Nègre-Salvayre A., Hirtz C., Carrera G., Cazenave R., Troly M., Salvayre R., Pénicaud L., Casteilla L. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 1997 Aug;11(10):809–815. [PubMed] [Google Scholar]
  23. Richieri G. V., Anel A., Kleinfeld A. M. Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry. 1993 Jul 27;32(29):7574–7580. doi: 10.1021/bi00080a032. [DOI] [PubMed] [Google Scholar]
  24. Rolfe D. F., Brand M. D. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol. 1996 Oct;271(4 Pt 1):C1380–C1389. doi: 10.1152/ajpcell.1996.271.4.C1380. [DOI] [PubMed] [Google Scholar]
  25. Rolfe D. F., Brown G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997 Jul;77(3):731–758. doi: 10.1152/physrev.1997.77.3.731. [DOI] [PubMed] [Google Scholar]
  26. Schrauwen P., Troost F. J., Xia J., Ravussin E., Saris W. H. Skeletal muscle UCP2 and UCP3 expression in trained and untrained male subjects. Int J Obes Relat Metab Disord. 1999 Sep;23(9):966–972. doi: 10.1038/sj.ijo.0801026. [DOI] [PubMed] [Google Scholar]
  27. Schrauwen P., Xia J., Bogardus C., Pratley R. E., Ravussin E. Skeletal muscle uncoupling protein 3 expression is a determinant of energy expenditure in Pima Indians. Diabetes. 1999 Jan;48(1):146–149. doi: 10.2337/diabetes.48.1.146. [DOI] [PubMed] [Google Scholar]
  28. Schönfeld P., Bohnensack R. Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier. FEBS Lett. 1997 Dec 29;420(2-3):167–170. doi: 10.1016/s0014-5793(97)01511-1. [DOI] [PubMed] [Google Scholar]
  29. Sharpe M. A., Cooper C. E., Wrigglesworth J. M. The effect of membrane potential on the protonophoric action of oleic acid. Biochem Soc Trans. 1991 Aug;19(3):257S–257S. doi: 10.1042/bst019257s. [DOI] [PubMed] [Google Scholar]
  30. Skulachev V. P. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys. 1996 May;29(2):169–202. doi: 10.1017/s0033583500005795. [DOI] [PubMed] [Google Scholar]
  31. Solanes G., Vidal-Puig A., Grujic D., Flier J. S., Lowell B. B. The human uncoupling protein-3 gene. Genomic structure, chromosomal localization, and genetic basis for short and long form transcripts. J Biol Chem. 1997 Oct 10;272(41):25433–25436. doi: 10.1074/jbc.272.41.25433. [DOI] [PubMed] [Google Scholar]
  32. Strieleman P. J., Schalinske K. L., Shrago E. Fatty acid activation of the reconstituted brown adipose tissue mitochondria uncoupling protein. J Biol Chem. 1985 Nov 5;260(25):13402–13405. [PubMed] [Google Scholar]
  33. Tiidus P. M., Pushkarenko J., Houston M. E. Lack of antioxidant adaptation to short-term aerobic training in human muscle. Am J Physiol. 1996 Oct;271(4 Pt 2):R832–R836. doi: 10.1152/ajpregu.1996.271.4.R832. [DOI] [PubMed] [Google Scholar]
  34. Tonkonogi M., Sahlin K. Actively phosphorylating mitochondria are more resistant to lactic acidosis than inactive mitochondria. Am J Physiol. 1999 Aug;277(2 Pt 1):C288–C293. doi: 10.1152/ajpcell.1999.277.2.C288. [DOI] [PubMed] [Google Scholar]
  35. Tonkonogi M., Sahlin K. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand. 1997 Nov;161(3):345–353. doi: 10.1046/j.1365-201X.1997.00222.x. [DOI] [PubMed] [Google Scholar]
  36. Tsuboyama-Kasaoka N., Tsunoda N., Maruyama K., Takahashi M., Kim H., Ikemoto S., Ezaki O. Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles. Biochem Biophys Res Commun. 1998 Jun 18;247(2):498–503. doi: 10.1006/bbrc.1998.8818. [DOI] [PubMed] [Google Scholar]
  37. Vidal-Puig A. J., Grujic D., Zhang C. Y., Hagen T., Boss O., Ido Y., Szczepanik A., Wade J., Mootha V., Cortright R. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000 May 26;275(21):16258–16266. doi: 10.1074/jbc.M910179199. [DOI] [PubMed] [Google Scholar]
  38. Zhang C. Y., Hagen T., Mootha V. K., Slieker L. J., Lowell B. B. Assessment of uncoupling activity of uncoupling protein 3 using a yeast heterologous expression system. FEBS Lett. 1999 Apr 23;449(2-3):129–134. doi: 10.1016/s0014-5793(99)00441-x. [DOI] [PubMed] [Google Scholar]
  39. Zurlo F., Larson K., Bogardus C., Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990 Nov;86(5):1423–1427. doi: 10.1172/JCI114857. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES