Abstract
We reported previously that synthetic amides of polyunsaturated fatty acids with bioactive amines can result in substances that interact with proteins of the endogenous cannabinoid system (ECS). Here we synthesized a series of N-acyl-dopamines (NADAs) and studied their effects on the anandamide membrane transporter, the anandamide amidohydrolase (fatty acid amide hydrolase, FAAH) and the two cannabinoid receptor subtypes, CB(1) and CB(2). NADAs competitively inhibited FAAH from N18TG2 cells (IC(50)=19-100 microM), as well as the binding of the selective CB(1) receptor ligand, [(3)H]SR141716A, to rat brain membranes (K(i)=250-3900 nM). The arachidonoyl (20:4 omega 6), eicosapentaenoyl (20:5 omega 3), docosapentaenoyl (22:5 omega 3), alpha-linolenoyl (18:3 omega 3) and pinolenoyl (5c,9c,12c 18:3 omega 6) homologues were also found to inhibit the anandamide membrane transporter in RBL-2H3 basophilic leukaemia and C6 glioma cells (IC(50)=17.5-33 microM). NADAs did not inhibit the binding of the CB(1)/CB(2) receptor ligand, [(3)H]WIN55,212-2, to rat spleen membranes (K(i)>10 microM). N-arachidonyl-dopamine (AA-DA) exhibited 40-fold selectivity for CB(1) (K(i)=250 nM) over CB(2) receptors, and N-docosapentaenoyl-dopamine exhibited 4-fold selectivity for the anandamide transporter over FAAH. AA-DA (0.1-10 microM) did not displace D1 and D2 dopamine-receptor high-affinity ligands from rat brain membranes, thus suggesting that this compound has little affinity for these receptors. AA-DA was more potent and efficacious than anandamide as a CB(1) agonist, as assessed by measuring the stimulatory effect on intracellular Ca(2+) mobilization in undifferentiated N18TG2 neuroblastoma cells. This effect of AA-DA was counteracted by the CB(1) antagonist SR141716A. AA-DA behaved as a CB(1) agonist in vivo by inducing hypothermia, hypo-locomotion, catalepsy and analgesia in mice (1-10 mg/kg). Finally, AA-DA potently inhibited (IC(50)=0.25 microM) the proliferation of human breast MCF-7 cancer cells, thus behaving like other CB(1) agonists. Also this effect was counteracted by SR141716A but not by the D2 antagonist haloperidol. We conclude that NADAs, and AA-DA in particular, may be novel and useful probes for the study of the ECS.
Full Text
The Full Text of this article is available as a PDF (183.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abood M. E., Ditto K. E., Noel M. A., Showalter V. M., Tao Q. Isolation and expression of a mouse CB1 cannabinoid receptor gene. Comparison of binding properties with those of native CB1 receptors in mouse brain and N18TG2 neuroblastoma cells. Biochem Pharmacol. 1997 Jan 24;53(2):207–214. doi: 10.1016/s0006-2952(96)00727-7. [DOI] [PubMed] [Google Scholar]
- Bezuglov V. V., Bobrov MYu, Archakov A. V. Bioactive amides of fatty acids. Biochemistry (Mosc) 1998 Jan;63(1):22–30. [PubMed] [Google Scholar]
- Bisogno T., Katayama K., Melck D., Ueda N., De Petrocellis L., Yamamoto S., Di Marzo V. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells--implications for cell proliferation and differentiation. Eur J Biochem. 1998 Jun 15;254(3):634–642. doi: 10.1046/j.1432-1327.1998.2540634.x. [DOI] [PubMed] [Google Scholar]
- Bisogno T., Maurelli S., Melck D., De Petrocellis L., Di Marzo V. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem. 1997 Feb 7;272(6):3315–3323. doi: 10.1074/jbc.272.6.3315. [DOI] [PubMed] [Google Scholar]
- Bisogno T., Melck D., De Petrocellis L., Bobrov MYu, Gretskaya N. M., Bezuglov V. V., Sitachitta N., Gerwick W. H., Di Marzo V. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun. 1998 Jul 30;248(3):515–522. doi: 10.1006/bbrc.1998.8874. [DOI] [PubMed] [Google Scholar]
- Cravatt B. F., Giang D. K., Mayfield S. P., Boger D. L., Lerner R. A., Gilula N. B. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996 Nov 7;384(6604):83–87. doi: 10.1038/384083a0. [DOI] [PubMed] [Google Scholar]
- Crawley J. N., Corwin R. L., Robinson J. K., Felder C. C., Devane W. A., Axelrod J. Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents. Pharmacol Biochem Behav. 1993 Dec;46(4):967–972. doi: 10.1016/0091-3057(93)90230-q. [DOI] [PubMed] [Google Scholar]
- De Petrocellis L., Melck D., Palmisano A., Bisogno T., Laezza C., Bifulco M., Di Marzo V. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8375–8380. doi: 10.1073/pnas.95.14.8375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devane W. A., Hanus L., Breuer A., Pertwee R. G., Stevenson L. A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992 Dec 18;258(5090):1946–1949. doi: 10.1126/science.1470919. [DOI] [PubMed] [Google Scholar]
- Di Marzo V. 'Endocannabinoids' and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim Biophys Acta. 1998 Jun 15;1392(2-3):153–175. doi: 10.1016/s0005-2760(98)00042-3. [DOI] [PubMed] [Google Scholar]
- Di Marzo V., Bisogno T., De Petrocellis L., Melck D., Martin B. R. Cannabimimetic fatty acid derivatives: the anandamide family and other endocannabinoids. Curr Med Chem. 1999 Aug;6(8):721–744. [PubMed] [Google Scholar]
- Di Marzo V., Bisogno T., Melck D., Ross R., Brockie H., Stevenson L., Pertwee R., De Petrocellis L. Interactions between synthetic vanilloids and the endogenous cannabinoid system. FEBS Lett. 1998 Oct 9;436(3):449–454. doi: 10.1016/s0014-5793(98)01175-2. [DOI] [PubMed] [Google Scholar]
- Di Marzo V., Deutsch D. G. Biochemistry of the endogenous ligands of cannabinoid receptors. Neurobiol Dis. 1998 Dec;5(6 Pt B):386–404. doi: 10.1006/nbdi.1998.0214. [DOI] [PubMed] [Google Scholar]
- Di Marzo V., Fontana A., Cadas H., Schinelli S., Cimino G., Schwartz J. C., Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994 Dec 15;372(6507):686–691. doi: 10.1038/372686a0. [DOI] [PubMed] [Google Scholar]
- Di Marzo V., Hill M. P., Bisogno T., Crossman A. R., Brotchie J. M. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J. 2000 Jul;14(10):1432–1438. doi: 10.1096/fj.14.10.1432. [DOI] [PubMed] [Google Scholar]
- Giuffrida A., Parsons L. H., Kerr T. M., Rodríguez de Fonseca F., Navarro M., Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci. 1999 Apr;2(4):358–363. doi: 10.1038/7268. [DOI] [PubMed] [Google Scholar]
- Hillard C. J., Campbell W. B. Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. J Lipid Res. 1997 Dec;38(12):2383–2398. [PubMed] [Google Scholar]
- Hillard C. J., Edgemond W. S., Jarrahian A., Campbell W. B. Accumulation of N-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via facilitated diffusion. J Neurochem. 1997 Aug;69(2):631–638. doi: 10.1046/j.1471-4159.1997.69020631.x. [DOI] [PubMed] [Google Scholar]
- Hillard C. J., Manna S., Greenberg M. J., DiCamelli R., Ross R. A., Stevenson L. A., Murphy V., Pertwee R. G., Campbell W. B. Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther. 1999 Jun;289(3):1427–1433. [PubMed] [Google Scholar]
- Janusz J. M., Buckwalter B. L., Young P. A., LaHann T. R., Farmer R. W., Kasting G. B., Loomans M. E., Kerckaert G. A., Maddin C. S., Berman E. F. Vanilloids. 1. Analogs of capsaicin with antinociceptive and antiinflammatory activity. J Med Chem. 1993 Sep 3;36(18):2595–2604. doi: 10.1021/jm00070a002. [DOI] [PubMed] [Google Scholar]
- Johnson D. E., Ochieng J., Evans S. L. The growth inhibitory properties of a dopamine agonist (SKF 38393) on MCF-7 cells. Anticancer Drugs. 1995 Jun;6(3):471–474. doi: 10.1097/00001813-199506000-00017. [DOI] [PubMed] [Google Scholar]
- Lang W., Qin C., Lin S., Khanolkar A. D., Goutopoulos A., Fan P., Abouzid K., Meng Z., Biegel D., Makriyannis A. Substrate specificity and stereoselectivity of rat brain microsomal anandamide amidohydrolase. J Med Chem. 1999 Mar 11;42(5):896–902. doi: 10.1021/jm980461j. [DOI] [PubMed] [Google Scholar]
- Maccarrone M., Bari M., Lorenzon T., Bisogno T., Di Marzo V., Finazzi-Agrò A. Anandamide uptake by human endothelial cells and its regulation by nitric oxide. J Biol Chem. 2000 May 5;275(18):13484–13492. doi: 10.1074/jbc.275.18.13484. [DOI] [PubMed] [Google Scholar]
- Martin B. R., Mechoulam R., Razdan R. K. Discovery and characterization of endogenous cannabinoids. Life Sci. 1999;65(6-7):573–595. doi: 10.1016/s0024-3205(99)00281-7. [DOI] [PubMed] [Google Scholar]
- Matsuda L. A., Lolait S. J., Brownstein M. J., Young A. C., Bonner T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990 Aug 9;346(6284):561–564. doi: 10.1038/346561a0. [DOI] [PubMed] [Google Scholar]
- Maurelli S., Bisogno T., De Petrocellis L., Di Luccia A., Marino G., Di Marzo V. Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma 'anandamide amidohydrolase'. FEBS Lett. 1995 Dec 11;377(1):82–86. doi: 10.1016/0014-5793(95)01311-3. [DOI] [PubMed] [Google Scholar]
- Mechoulam R., Ben-Shabat S., Hanus L., Ligumsky M., Kaminski N. E., Schatz A. R., Gopher A., Almog S., Martin B. R., Compton D. R. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995 Jun 29;50(1):83–90. doi: 10.1016/0006-2952(95)00109-d. [DOI] [PubMed] [Google Scholar]
- Mechoulam R., Fride E., Hanus L., Sheskin T., Bisogno T., Di Marzo V., Bayewitch M., Vogel Z. Anandamide may mediate sleep induction. Nature. 1997 Sep 4;389(6646):25–26. doi: 10.1038/37891. [DOI] [PubMed] [Google Scholar]
- Melck D., Bisogno T., De Petrocellis L., Chuang H., Julius D., Bifulco M., Di Marzo V. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Biochem Biophys Res Commun. 1999 Aug 19;262(1):275–284. doi: 10.1006/bbrc.1999.1105. [DOI] [PubMed] [Google Scholar]
- Melck D., De Petrocellis L., Orlando P., Bisogno T., Laezza C., Bifulco M., Di Marzo V. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology. 2000 Jan;141(1):118–126. doi: 10.1210/endo.141.1.7239. [DOI] [PubMed] [Google Scholar]
- Melck D., Rueda D., Galve-Roperh I., De Petrocellis L., Guzmán M., Di Marzo V. Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells. FEBS Lett. 1999 Dec 17;463(3):235–240. doi: 10.1016/s0014-5793(99)01639-7. [DOI] [PubMed] [Google Scholar]
- Mombouli J. V., Schaeffer G., Holzmann S., Kostner G. M., Graier W. F. Anandamide-induced mobilization of cytosolic Ca2+ in endothelial cells. Br J Pharmacol. 1999 Apr;126(7):1593–1600. doi: 10.1038/sj.bjp.0702483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munro S., Thomas K. L., Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993 Sep 2;365(6441):61–65. doi: 10.1038/365061a0. [DOI] [PubMed] [Google Scholar]
- Pertwee R. G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther. 1997;74(2):129–180. doi: 10.1016/s0163-7258(97)82001-3. [DOI] [PubMed] [Google Scholar]
- Pertwee R. G. The ring test: a quantitative method for assessing the 'cataleptic' effect of cannabis in mice. Br J Pharmacol. 1972 Dec;46(4):753–763. doi: 10.1111/j.1476-5381.1972.tb06900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rakhshan F., Day T. A., Blakely R. D., Barker E. L. Carrier-mediated uptake of the endogenous cannabinoid anandamide in RBL-2H3 cells. J Pharmacol Exp Ther. 2000 Mar;292(3):960–967. [PubMed] [Google Scholar]
- Smart D., Jerman J. C. Anandamide: an endogenous activator of the vanilloid receptor. Trends Pharmacol Sci. 2000 Apr;21(4):134–134. doi: 10.1016/s0165-6147(00)01459-0. [DOI] [PubMed] [Google Scholar]
- Sokoloff P., Riou J. F., Martres M. P., Schwartz J. C. Presence of dopamine D-2 receptors in human tumoral cell lines. Biochem Biophys Res Commun. 1989 Jul 31;162(2):575–582. doi: 10.1016/0006-291x(89)92349-8. [DOI] [PubMed] [Google Scholar]
- Sugiura T., Kodaka T., Kondo S., Nakane S., Kondo H., Waku K., Ishima Y., Watanabe K., Yamamoto I. Is the cannabinoid CB1 receptor a 2-arachidonoylglycerol receptor? Structural requirements for triggering a Ca2+ transient in NG108-15 cells. J Biochem. 1997 Oct;122(4):890–895. doi: 10.1093/oxfordjournals.jbchem.a021838. [DOI] [PubMed] [Google Scholar]
- Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., Itoh K., Yamashita A., Waku K. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995 Oct 4;215(1):89–97. doi: 10.1006/bbrc.1995.2437. [DOI] [PubMed] [Google Scholar]
- Tominaga M., Caterina M. J., Malmberg A. B., Rosen T. A., Gilbert H., Skinner K., Raumann B. E., Basbaum A. I., Julius D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998 Sep;21(3):531–543. doi: 10.1016/s0896-6273(00)80564-4. [DOI] [PubMed] [Google Scholar]
- Ueda N., Kurahashi Y., Yamamoto S., Tokunaga T. Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem. 1995 Oct 6;270(40):23823–23827. doi: 10.1074/jbc.270.40.23823. [DOI] [PubMed] [Google Scholar]
- Ueda N., Yamamoto S. Anandamide amidohydrolase (fatty acid amide hydrolase). Prostaglandins Other Lipid Mediat. 2000 Apr;61(1-2):19–28. doi: 10.1016/s0090-6980(00)00052-6. [DOI] [PubMed] [Google Scholar]
- Ueda N., Yamanaka K., Terasawa Y., Yamamoto S. An acid amidase hydrolyzing anandamide as an endogenous ligand for cannabinoid receptors. FEBS Lett. 1999 Jul 9;454(3):267–270. doi: 10.1016/s0014-5793(99)00820-0. [DOI] [PubMed] [Google Scholar]
- Walpole C. S., Wrigglesworth R., Bevan S., Campbell E. A., Dray A., James I. F., Masdin K. J., Perkins M. N., Winter J. Analogues of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 2. The amide bond "B-region". J Med Chem. 1993 Aug 6;36(16):2373–2380. doi: 10.1021/jm00068a015. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Matsunaga T., Nakamura S., Kimura T., Ho I. K., Yoshimura H., Yamamoto I. Pharmacological effects in mice of anandamide and its related fatty acid ethanolamides, and enhancement of cataleptogenic effect of anandamide by phenylmethylsulfonyl fluoride. Biol Pharm Bull. 1999 Apr;22(4):366–370. doi: 10.1248/bpb.22.366. [DOI] [PubMed] [Google Scholar]
- Winter J., Walpole C. S., Bevan S., James I. F. Characterization of resiniferatoxin binding sites on sensory neurons: co-regulation of resiniferatoxin binding and capsaicin sensitivity in adult rat dorsal root ganglia. Neuroscience. 1993 Dec;57(3):747–757. doi: 10.1016/0306-4522(93)90021-7. [DOI] [PubMed] [Google Scholar]
- Zygmunt P. M., Chuang H., Movahed P., Julius D., Högestätt E. D. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur J Pharmacol. 2000 May 12;396(1):39–42. doi: 10.1016/s0014-2999(00)00207-7. [DOI] [PubMed] [Google Scholar]