Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Nov 15;352(Pt 1):27–36.

The mechanism of Fe(2+)-initiated lipid peroxidation in liposomes: the dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical.

L Tang 1, Y Zhang 1, Z Qian 1, X Shen 1
PMCID: PMC1221429  PMID: 11062055

Abstract

The mechanism of Fe(2+)-initiated lipid peroxidation in a liposomal system was studied. It was found that a second addition of ferrous ions within the latent period lengthened the time lag before lipid peroxidation started. The apparent time lag depended on the total dose of Fe(2+) whenever the second dose of Fe(2+) was added, which indicates that Fe(2+) has a dual function: to initiate lipid peroxidation on one hand and suppress the species responsible for the initiation of the peroxidation on the other. When the pre-existing lipid peroxides (LOOH) were removed by incorporating triphenylphosphine into liposomes, Fe(2+) could no longer initiate lipid peroxidation and the acceleration of Fe(2+) oxidation by the liposomes disappeared. However, when extra LOOH were introduced into liposomes, both enhancement of the lipid peroxidation and shortening of the latent period were observed. When the scavenger of lipid peroxyl radicals (LOO(.)), N,N'-diphenyl-p-phenylene-diamine, was incorporated into liposomes, neither initiation of the lipid peroxidation nor acceleration of the Fe(2+) oxidation could be detected. The results may suggest that both the pre-existing LOOH and LOO(.) are necessary for the initiation of lipid peroxidation. The latter comes initially from the decomposition of the pre-existing LOOH by Fe(2+) and can be scavenged by its reaction with Fe(2+). Only when Fe(2+) is oxidized to such a degree that LOO(.) is no longer effectively suppressed does lipid peroxidation start. It seems that by taking the reactions of Fe(2+) with LOOH and LOO(.) into account, the basic chemistry in lipid peroxidation can explain fairly well the controversial phenomena observed in Fe(2+)-initiated lipid peroxidation, such as the existence of a latent period, the critical ratio of Fe(2+) to lipid and the required oxidation of Fe(2+).

Full Text

The Full Text of this article is available as a PDF (242.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aruoma O. I., Halliwell B., Laughton M. J., Quinlan G. J., Gutteridge J. M. The mechanism of initiation of lipid peroxidation. Evidence against a requirement for an iron(II)-iron(III) complex. Biochem J. 1989 Mar 1;258(2):617–620. doi: 10.1042/bj2580617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Beloqui O., Cederbaum A. I. Prevention of microsomal production of hydroxyl radicals, but not lipid peroxidation, by the glutathione-glutathione peroxidase system. Biochem Pharmacol. 1986 Aug 15;35(16):2663–2669. doi: 10.1016/0006-2952(86)90172-3. [DOI] [PubMed] [Google Scholar]
  4. Benedetti A., Comporti M., Esterbauer H. Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta. 1980 Nov 7;620(2):281–296. doi: 10.1016/0005-2760(80)90209-x. [DOI] [PubMed] [Google Scholar]
  5. Braughler J. M., Duncan L. A., Chase R. L. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J Biol Chem. 1986 Aug 5;261(22):10282–10289. [PubMed] [Google Scholar]
  6. Bucher J. R., Tien M., Aust S. D. The requirement for ferric in the initiation of lipid peroxidation by chelated ferrous iron. Biochem Biophys Res Commun. 1983 Mar 29;111(3):777–784. doi: 10.1016/0006-291x(83)91366-9. [DOI] [PubMed] [Google Scholar]
  7. Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/s0076-6879(78)52032-6. [DOI] [PubMed] [Google Scholar]
  8. Driomina E. S., Sharov V. S., Vladimirov Y. A. Fe(2+)-induced lipid peroxidation kinetics in liposomes: the role of surface Fe2+ concentration in switching the reaction from acceleration to decay. Free Radic Biol Med. 1993 Sep;15(3):239–247. doi: 10.1016/0891-5849(93)90070-b. [DOI] [PubMed] [Google Scholar]
  9. Goddard J. G., Sweeney G. D. Delayed, ferrous iron-dependent peroxidation of rat liver microsomes. Arch Biochem Biophys. 1987 Dec;259(2):372–381. doi: 10.1016/0003-9861(87)90503-0. [DOI] [PubMed] [Google Scholar]
  10. Gutteridge J. M. Ferrous ion-EDTA-stimulated phospholipid peroxidation. A reaction changing from alkoxyl-radical- to hydroxyl-radical-dependent initiation. Biochem J. 1984 Dec 15;224(3):697–701. doi: 10.1042/bj2240697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Halliwell B. An attempt to demonstrate a reaction between superoxide and hydrogen peroxide. FEBS Lett. 1976 Dec 15;72(1):8–10. doi: 10.1016/0014-5793(76)80801-0. [DOI] [PubMed] [Google Scholar]
  12. Hochstein P., Nordenbrand K., Ernster L. Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria. Biochem Biophys Res Commun. 1964;14:323–328. doi: 10.1016/s0006-291x(64)80004-8. [DOI] [PubMed] [Google Scholar]
  13. MAHLER H. R., ELOWE D. G. Studies on metalloflavoproteins. II. The rôle of iron in diphosphopyridine nucleotide cytochrome c reductase. J Biol Chem. 1954 Sep;210(1):165–179. [PubMed] [Google Scholar]
  14. Minotti G., Aust S. D. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem. 1987 Jan 25;262(3):1098–1104. [PubMed] [Google Scholar]
  15. Minotti G., Aust S. D. The role of iron in the initiation of lipid peroxidation. Chem Phys Lipids. 1987 Jul-Sep;44(2-4):191–208. doi: 10.1016/0009-3084(87)90050-8. [DOI] [PubMed] [Google Scholar]
  16. Morehouse L. A., Tien M., Bucher J. R., Aust S. D. Effect of hydrogen peroxide on the initiation of microsomal lipid peroxidation. Biochem Pharmacol. 1983 Jan 1;32(1):123–127. doi: 10.1016/0006-2952(83)90663-9. [DOI] [PubMed] [Google Scholar]
  17. Noguchi N., Yamashita H., Gotoh N., Yamamoto Y., Numano R., Niki E. 2,2'-Azobis (4-methoxy-2,4-dimethylvaleronitrile), a new lipid-soluble azo initiator: application to oxidations of lipids and low-density lipoprotein in solution and in aqueous dispersions. Free Radic Biol Med. 1998 Jan 15;24(2):259–268. doi: 10.1016/s0891-5849(97)00230-x. [DOI] [PubMed] [Google Scholar]
  18. Poli G., Albano E., Dianzani M. U. The role of lipid peroxidation in liver damage. Chem Phys Lipids. 1987 Nov-Dec;45(2-4):117–142. doi: 10.1016/0009-3084(87)90063-6. [DOI] [PubMed] [Google Scholar]
  19. Pryor W. A. Free radical reactions and their importance in biochemical systems. Fed Proc. 1973 Aug;32(8):1862–1869. [PubMed] [Google Scholar]
  20. Rush J. D., Koppenol W. H. Reactions of Fe(II)-ATP and Fe(II)-citrate complexes with t-butyl hydroperoxide and cumyl hydroperoxide. FEBS Lett. 1990 Nov 26;275(1-2):114–116. doi: 10.1016/0014-5793(90)81452-t. [DOI] [PubMed] [Google Scholar]
  21. Shi H., Noguchi N., Niki E. Comparative study on dynamics of antioxidative action of alpha-tocopheryl hydroquinone, ubiquinol, and alpha-tocopherol against lipid peroxidation. Free Radic Biol Med. 1999 Aug;27(3-4):334–346. doi: 10.1016/s0891-5849(99)00053-2. [DOI] [PubMed] [Google Scholar]
  22. Tadolini B., Cabrini L., Menna C., Pinna G. G., Hakim G. Iron (III) stimulation of lipid hydroperoxide-dependent lipid peroxidation. Free Radic Res. 1997 Dec;27(6):563–576. doi: 10.3109/10715769709097860. [DOI] [PubMed] [Google Scholar]
  23. Terao J., Asano I., Matsushita S. Preparation of hydroperoxy and hydroxy derivatives of rat liver phosphatidylcholine and phosphatidylethanolamine. Lipids. 1985 May;20(5):312–317. doi: 10.1007/BF02534264. [DOI] [PubMed] [Google Scholar]
  24. Tien M., Bucher J. R., Aust S. D. Thiol-dependent lipid peroxidation. Biochem Biophys Res Commun. 1982 Jul 16;107(1):279–285. doi: 10.1016/0006-291x(82)91701-6. [DOI] [PubMed] [Google Scholar]
  25. Xun S., Jingdong T., Zhaonan Z., Xinyuan L. Chemiluminescence study on the peroxidation of linoleic acid initiated by the reaction of ferrous iron with hydrogen peroxide. Biophys Chem. 1991 May;40(2):161–167. doi: 10.1016/0301-4622(91)87005-p. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES