Abstract
Intrinsic cardiac dysfunction during the diabetic state has been causally linked to changes in myocardial lipid metabolism. However, the precise alterations in the molecular species of myocardial polar and non-polar lipids during the diabetic state and their responses to insulin have not been investigated. Herein we demonstrate four specific alterations in rat myocardial lipid molecular species after induction of the diabetic state by streptozotocin treatment: (i) a massive remodelling of triacylglycerol molecular species including a >5-fold increase in tripalmitin mass and a 60% decrease in polyunsaturated triacylglycerol molecular species mass (i.e. triacylglycerols containing at least one acyl residue with more than two double bonds); (ii) a 46% increase in myocardial phosphatidylinositol mass; (iii) a 44% increase in myocardial plasmenylethanolamine mass and (iv) a 22% decrease in 1-stearoyl-2-arachidonoyl phosphatidylethanolamine content. Each of the changes in phospholipid classes, subclasses and individual molecular species were prevented by insulin treatment after induction of the diabetic state. In sharp contrast, the alterations in triacylglycerol molecular species were not preventable by peripheral insulin treatment after induction of the diabetic state. These results segregate diabetes-induced alterations in myocardial lipid metabolism into changes that can be remedied or not by routine peripheral insulin treatment and suggest that peripheral insulin therapy alone may not be sufficient to correct all of the metabolic alterations present in diabetic myocardium.
Full Text
The Full Text of this article is available as a PDF (195.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Barthel A., Nakatani K., Dandekar A. A., Roth R. A. Protein kinase C modulates the insulin-stimulated increase in Akt1 and Akt3 activity in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 1998 Feb 13;243(2):509–513. doi: 10.1006/bbrc.1998.8134. [DOI] [PubMed] [Google Scholar]
- Brenner R. R. Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog Lipid Res. 1984;23(2):69–96. doi: 10.1016/0163-7827(84)90008-0. [DOI] [PubMed] [Google Scholar]
- Burgering B. M., Coffer P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature. 1995 Aug 17;376(6541):599–602. doi: 10.1038/376599a0. [DOI] [PubMed] [Google Scholar]
- Carpenter C. L., Cantley L. C. Phosphoinositide kinases. Curr Opin Cell Biol. 1996 Apr;8(2):153–158. doi: 10.1016/s0955-0674(96)80060-3. [DOI] [PubMed] [Google Scholar]
- Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [PubMed] [Google Scholar]
- Dohm G. L., Dolan P. L., Frisell W. R., Dudek R. W. Role of transverse tubules in insulin stimulated muscle glucose transport. J Cell Biochem. 1993 May;52(1):1–7. doi: 10.1002/jcb.240520102. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
- Fink K. L., Gross R. W. Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds. Circ Res. 1984 Nov;55(5):585–594. doi: 10.1161/01.res.55.5.585. [DOI] [PubMed] [Google Scholar]
- Folli F., Saad M. J., Backer J. M., Kahn C. R. Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat. J Biol Chem. 1992 Nov 5;267(31):22171–22177. [PubMed] [Google Scholar]
- Ford D. A., Rosenbloom K. B., Gross R. W. The primary determinant of rabbit myocardial ethanolamine phosphotransferase substrate selectivity is the covalent nature of the sn-1 aliphatic group of diradyl glycerol acceptors. J Biol Chem. 1992 Jun 5;267(16):11222–11228. [PubMed] [Google Scholar]
- Franke T. F., Yang S. I., Chan T. O., Datta K., Kazlauskas A., Morrison D. K., Kaplan D. R., Tsichlis P. N. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995 Jun 2;81(5):727–736. doi: 10.1016/0092-8674(95)90534-0. [DOI] [PubMed] [Google Scholar]
- Giorgino F., Logoluso F., Davalli A. M., Napoli R., Laviola L., Hirshman M. F., Horton E. S., Weir G. C., Smith R. J. Islet transplantation restores normal levels of insulin receptor and substrate tyrosine phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle and myocardium of streptozocin-induced diabetic rats. Diabetes. 1999 Apr;48(4):801–812. doi: 10.2337/diabetes.48.4.801. [DOI] [PubMed] [Google Scholar]
- Glaser P. E., Gross R. W. Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. Biochemistry. 1994 May 17;33(19):5805–5812. doi: 10.1021/bi00185a019. [DOI] [PubMed] [Google Scholar]
- Glaser P. E., Gross R. W. Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry. 1995 Sep 26;34(38):12193–12203. doi: 10.1021/bi00038a013. [DOI] [PubMed] [Google Scholar]
- Gould G. W., Jess T. J., Andrews G. C., Herbst J. J., Plevin R. J., Gibbs E. M. Evidence for a role of phosphatidylinositol 3-kinase in the regulation of glucose transport in Xenopus oocytes. J Biol Chem. 1994 Oct 28;269(43):26622–26625. [PubMed] [Google Scholar]
- Han X., Gross R. W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10635–10639. doi: 10.1073/pnas.91.22.10635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han X., Gubitosi-Klug R. A., Collins B. J., Gross R. W. Alterations in individual molecular species of human platelet phospholipids during thrombin stimulation: electrospray ionization mass spectrometry-facilitated identification of the boundary conditions for the magnitude and selectivity of thrombin-induced platelet phospholipid hydrolysis. Biochemistry. 1996 May 7;35(18):5822–5832. doi: 10.1021/bi952927v. [DOI] [PubMed] [Google Scholar]
- Hu Q., Ishii E., Nakagawa Y. Differential changes in relative levels of arachidonic acid in major phospholipids from rat tissues during the progression of diabetes. J Biochem. 1994 Mar;115(3):405–408. doi: 10.1093/oxfordjournals.jbchem.a124351. [DOI] [PubMed] [Google Scholar]
- Ishizuka T., Kajita K., Miura A., Ishizawa M., Kanoh Y., Itaya S., Kimura M., Muto N., Mune T., Morita H. DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase. Am J Physiol. 1999 Jan;276(1 Pt 1):E196–E204. doi: 10.1152/ajpendo.1999.276.1.E196. [DOI] [PubMed] [Google Scholar]
- Jansson L., Eizirik D. L., Sandler S. Terbutaline decreases the blood flow of the pancreatic islets but does not reduce the diabetogenic action of streptozotocin in the rat. Eur J Pharmacol. 1989 Feb 14;161(1):79–83. doi: 10.1016/0014-2999(89)90182-9. [DOI] [PubMed] [Google Scholar]
- Kerwin J. L., Tuininga A. R., Ericsson L. H. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res. 1994 Jun;35(6):1102–1114. [PubMed] [Google Scholar]
- Kohn A. D., Barthel A., Kovacina K. S., Boge A., Wallach B., Summers S. A., Birnbaum M. J., Scott P. H., Lawrence J. C., Jr, Roth R. A. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem. 1998 May 8;273(19):11937–11943. doi: 10.1074/jbc.273.19.11937. [DOI] [PubMed] [Google Scholar]
- Krook A., Roth R. A., Jiang X. J., Zierath J. R., Wallberg-Henriksson H. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes. 1998 Aug;47(8):1281–1286. doi: 10.2337/diab.47.8.1281. [DOI] [PubMed] [Google Scholar]
- Kuwahara Y., Yanagishita T., Konno N., Katagiri T. Changes in microsomal membrane phospholipids and fatty acids and in activities of membrane-bound enzyme in diabetic rat heart. Basic Res Cardiol. 1997 Aug;92(4):214–222. doi: 10.1007/BF00788516. [DOI] [PubMed] [Google Scholar]
- Lawrence J. C., Jr, Roach P. J. New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes. 1997 Apr;46(4):541–547. doi: 10.2337/diab.46.4.541. [DOI] [PubMed] [Google Scholar]
- Leevers S. J., Vanhaesebroeck B., Waterfield M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol. 1999 Apr;11(2):219–225. doi: 10.1016/s0955-0674(99)80029-5. [DOI] [PubMed] [Google Scholar]
- Li J., DeFea K., Roth R. A. Modulation of insulin receptor substrate-1 tyrosine phosphorylation by an Akt/phosphatidylinositol 3-kinase pathway. J Biol Chem. 1999 Apr 2;274(14):9351–9356. doi: 10.1074/jbc.274.14.9351. [DOI] [PubMed] [Google Scholar]
- Maehama T., Dixon J. E. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 1999 Apr;9(4):125–128. doi: 10.1016/s0962-8924(99)01519-6. [DOI] [PubMed] [Google Scholar]
- Marshall B. A., Tordjman K., Host H. H., Ensor N. J., Kwon G., Marshall C. A., Coleman T., McDaniel M. L., Semenkovich C. F. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion. J Biol Chem. 1999 Sep 24;274(39):27426–27432. doi: 10.1074/jbc.274.39.27426. [DOI] [PubMed] [Google Scholar]
- McCallum C. D., Epand R. M. Insulin receptor autophosphorylation and signaling is altered by modulation of membrane physical properties. Biochemistry. 1995 Feb 14;34(6):1815–1824. doi: 10.1021/bi00006a001. [DOI] [PubMed] [Google Scholar]
- Muderhwa J. M., Brockman H. L. Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid-mediated signal transduction. J Biol Chem. 1992 Dec 5;267(34):24184–24192. [PubMed] [Google Scholar]
- Murthy V. K., Shipp J. C. Accumulation of myocardial triglycerides ketotic diabetes; evidence for increased biosynthesis. Diabetes. 1977 Mar;26(3):222–229. doi: 10.2337/diab.26.3.222. [DOI] [PubMed] [Google Scholar]
- Pavoine C., Magne S., Sauvadet A., Pecker F. Evidence for a beta2-adrenergic/arachidonic acid pathway in ventricular cardiomyocytes. Regulation by the beta1-adrenergic/camp pathway. J Biol Chem. 1999 Jan 8;274(2):628–637. doi: 10.1074/jbc.274.2.628. [DOI] [PubMed] [Google Scholar]
- Ramanadham S., Doroudian A., McNeill J. H. Myocardial and metabolic abnormalities in streptozotocin-diabetic Wistar and Wistar-Kyoto rats. Can J Cardiol. 1990 Mar;6(2):75–82. [PubMed] [Google Scholar]
- Ramanadham S., Hsu F. F., Bohrer A., Nowatzke W., Ma Z., Turk J. Electrospray ionization mass spectrometric analyses of phospholipids from rat and human pancreatic islets and subcellular membranes: comparison to other tissues and implications for membrane fusion in insulin exocytosis. Biochemistry. 1998 Mar 31;37(13):4553–4567. doi: 10.1021/bi9722507. [DOI] [PubMed] [Google Scholar]
- Rehman J., Chenven E., Brink P., Peterson B., Walcott B., Wen Y. P., Melman A., Christ G. Diminished neurogenic but not pharmacological erections in the 2- to 3-month experimentally diabetic F-344 rat. Am J Physiol. 1997 Apr;272(4 Pt 2):H1960–H1971. doi: 10.1152/ajpheart.1997.272.4.H1960. [DOI] [PubMed] [Google Scholar]
- Rhee S. G., Choi K. D. Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem. 1992 Jun 25;267(18):12393–12396. [PubMed] [Google Scholar]
- Rodrigues B., Cam M. C., McNeill J. H. Myocardial substrate metabolism: implications for diabetic cardiomyopathy. J Mol Cell Cardiol. 1995 Jan;27(1):169–179. doi: 10.1016/s0022-2828(08)80016-8. [DOI] [PubMed] [Google Scholar]
- Rordorf-Nikolic T., Van Horn D. J., Chen D., White M. F., Backer J. M. Regulation of phosphatidylinositol 3'-kinase by tyrosyl phosphoproteins. Full activation requires occupancy of both SH2 domains in the 85-kDa regulatory subunit. J Biol Chem. 1995 Feb 24;270(8):3662–3666. doi: 10.1074/jbc.270.8.3662. [DOI] [PubMed] [Google Scholar]
- Rys-Sikora K. E., Gill D. L. Fatty acid-mediated calcium sequestration within intracellular calcium pools. J Biol Chem. 1998 Dec 4;273(49):32627–32635. doi: 10.1074/jbc.273.49.32627. [DOI] [PubMed] [Google Scholar]
- Schmitz-Peiffer C., Craig D. L., Biden T. J. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem. 1999 Aug 20;274(34):24202–24210. doi: 10.1074/jbc.274.34.24202. [DOI] [PubMed] [Google Scholar]
- Semenkovich C. F., Heinecke J. W. The mystery of diabetes and atherosclerosis: time for a new plot. Diabetes. 1997 Mar;46(3):327–334. doi: 10.2337/diab.46.3.327. [DOI] [PubMed] [Google Scholar]
- Stanley W. C., Lopaschuk G. D., McCormack J. G. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res. 1997 Apr;34(1):25–33. doi: 10.1016/s0008-6363(97)00047-3. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A. 1980 May;77(5):2542–2545. doi: 10.1073/pnas.77.5.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeh J. I., Gulve E. A., Rameh L., Birnbaum M. J. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem. 1995 Feb 3;270(5):2107–2111. doi: 10.1074/jbc.270.5.2107. [DOI] [PubMed] [Google Scholar]