Abstract
The cytochrome b(5) tail is a 43-residue membrane-embedded domain that is responsible for anchoring the catalytic domain of cytochrome b(5) to the endoplasmic reticulum membrane. Different models for the structure of the membrane domain of cytochrome b(5) have been proposed, including a helical hairpin and a single transmembrane helix. In the present study, CD spectroscopy was used to investigate the conformation of the tail in different environments, and as a function of temperature, with the goal of understanding the nature of the membrane-bound conformation. Whereas residue property profiling indicates that bending of a helix in the middle of the peptide might be possible, the experimental results in small unilamellar vesicles and lysophosphatidylcholine micelles are more consistent with a single transmembrane helix. Furthermore, although there is evidence for some refolding of the polypeptide with temperature, this is not consistent with a hairpin-to-transmembrane transition. Rather, it appears to represent an increase in helical content in fluid lipid environments, perhaps involving residues at the ends of the transmembrane segment.
Full Text
The Full Text of this article is available as a PDF (214.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. J., Mostov K. E., Blobel G. Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal-recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7249–7253. doi: 10.1073/pnas.80.23.7249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arinç E., Rzepecki L. M., Strittmatter P. Topography of the C terminus of cytochrome b5 tightly bound to dimyristoylphosphatidylcholine vesicles. J Biol Chem. 1987 Nov 15;262(32):15563–15567. [PubMed] [Google Scholar]
- Begum R. R., Newbold R. J., Whitford D. Purification of the membrane binding domain of cytochrome b5 by immobilised nickel chelate chromatography. J Chromatogr B Biomed Sci Appl. 2000 Jan 14;737(1-2):119–130. doi: 10.1016/s0378-4347(99)00480-6. [DOI] [PubMed] [Google Scholar]
- Brahms S., Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol. 1980 Apr;138(2):149–178. doi: 10.1016/0022-2836(80)90282-x. [DOI] [PubMed] [Google Scholar]
- Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
- Chen Y., Wallace B. A. Secondary solvent effects on the circular dichroism spectra of polypeptides in non-aqueous environments: influence of polarisation effects on the far ultraviolet spectra of alamethicin. Biophys Chem. 1997 Mar 27;65(1):65–74. doi: 10.1016/s0301-4622(96)02225-9. [DOI] [PubMed] [Google Scholar]
- Chester D. W., Skita V., Young H. S., Mavromoustakos T., Strittmatter P. Bilayer structure and physical dynamics of the cytochrome b5 dimyristoylphosphatidylcholine interaction. Biophys J. 1992 May;61(5):1224–1243. doi: 10.1016/S0006-3495(92)81932-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
- Cristiano R. J., Steggles A. W. The complete nucleotide sequence of bovine liver cytochrome b5 mRNA. Nucleic Acids Res. 1989 Jan 25;17(2):799–799. doi: 10.1093/nar/17.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dailey H. A., Strittmatter P. Structural and functional properties of the membrane binding segment of cytochrome b5. J Biol Chem. 1978 Nov 25;253(22):8203–8209. [PubMed] [Google Scholar]
- Durley R. C., Mathews F. S. Refinement and structural analysis of bovine cytochrome b5 at 1.5 A resolution. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):65–76. doi: 10.1107/S0907444995007827. [DOI] [PubMed] [Google Scholar]
- Enoch H. G., Fleming P. J., Strittmatter P. The binding of cytochrome b5 to phospholipid vesicles and biological membranes. Effect of orientation on intermembrane transfer and digestion by carboxypeptidase Y. J Biol Chem. 1979 Jul 25;254(14):6483–6488. [PubMed] [Google Scholar]
- Fleming P. J., Dailey H. A., Corcoran D., Strittmatter P. The primary structure of the nonpolar segment of bovine cytochrome b5. J Biol Chem. 1978 Aug 10;253(15):5369–5372. [PubMed] [Google Scholar]
- Gast K., Zirwer D., Müller-Frohne M., Damaschun G. Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between alpha-lactalbumin and ribonuclease A. Protein Sci. 1999 Mar;8(3):625–634. doi: 10.1110/ps.8.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gogol E. P., Engelman D. M. Neutron scattering shows that cytochrome b5 penetrates deeply into the lipid bilayer. Biophys J. 1984 Oct;46(4):491–495. doi: 10.1016/S0006-3495(84)84046-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hennessey J. P., Jr, Johnson W. C., Jr Experimental errors and their effect on analyzing circular dichroism spectra of proteins. Anal Biochem. 1982 Sep 1;125(1):177–188. doi: 10.1016/0003-2697(82)90400-6. [DOI] [PubMed] [Google Scholar]
- Hirokawa T., Boon-Chieng S., Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14(4):378–379. doi: 10.1093/bioinformatics/14.4.378. [DOI] [PubMed] [Google Scholar]
- Hirota N., Mizuno K., Goto Y. Group additive contributions to the alcohol-induced alpha-helix formation of melittin: implication for the mechanism of the alcohol effects on proteins. J Mol Biol. 1998 Jan 16;275(2):365–378. doi: 10.1006/jmbi.1997.1468. [DOI] [PubMed] [Google Scholar]
- Hofmann K., Stoffel W. PROFILEGRAPH: an interactive graphical tool for protein sequence analysis. Comput Appl Biosci. 1992 Aug;8(4):331–337. doi: 10.1093/bioinformatics/8.4.331. [DOI] [PubMed] [Google Scholar]
- Holloway P. W., Buchheit C. Topography of the membrane-binding domain of cytochrome b5 in lipids by Fourier-transform infrared spectroscopy. Biochemistry. 1990 Oct 16;29(41):9631–9637. doi: 10.1021/bi00493a018. [DOI] [PubMed] [Google Scholar]
- Holloway P. W., Mantsch H. H. Structure of cytochrome b5 in solution by Fourier-transform infrared spectroscopy. Biochemistry. 1989 Feb 7;28(3):931–935. doi: 10.1021/bi00429a002. [DOI] [PubMed] [Google Scholar]
- Hultquist D. E., Passon P. G. Catalysis of methaemoglobin reduction by erythrocyte cytochrome B5 and cytochrome B5 reductase. Nat New Biol. 1971 Feb 24;229(8):252–254. doi: 10.1038/newbio229252a0. [DOI] [PubMed] [Google Scholar]
- Ito A., Sato R. Purification by means of detergents and properties of cytochrome b5 from liver microsomes. J Biol Chem. 1968 Sep 25;243(18):4922–4923. [PubMed] [Google Scholar]
- Kearns E. V., Keck P., Somerville C. R. Primary Structure of Cytochrome b(5) from Cauliflower (Brassica oleracea L.) Deduced from Peptide and cDNA Sequences. Plant Physiol. 1992 Jul;99(3):1254–1257. doi: 10.1104/pp.99.3.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinfeld A. M., Lukacovic M. F. Energy-transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes. Biochemistry. 1985 Apr 9;24(8):1883–1890. doi: 10.1021/bi00329a012. [DOI] [PubMed] [Google Scholar]
- Kuroda R., Kinoshita J., Honsho M., Mitoma J., Ito A. In situ topology of cytochrome b5 in the endoplasmic reticulum membrane. J Biochem. 1996 Oct;120(4):828–833. doi: 10.1093/oxfordjournals.jbchem.a021486. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Ladokhin A. S., Wang L., Steggles A. W., Holloway P. W. Fluorescence study of a mutant cytochrome b5 with a single tryptophan in the membrane-binding domain. Biochemistry. 1991 Oct 22;30(42):10200–10206. doi: 10.1021/bi00106a018. [DOI] [PubMed] [Google Scholar]
- Ladokhin A. S., Wang L., Steggles A. W., Malak H., Holloway P. W. Fluorescence study of a temperature-induced conversion from the "loose" to the "tight" binding form of membrane-bound cytochrome b5. Biochemistry. 1993 Jul 13;32(27):6951–6956. doi: 10.1021/bi00078a020. [DOI] [PubMed] [Google Scholar]
- Luecke H., Richter H. T., Lanyi J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science. 1998 Jun 19;280(5371):1934–1937. doi: 10.1126/science.280.5371.1934. [DOI] [PubMed] [Google Scholar]
- Mao D., Wachter E., Wallace B. A. Folding of the mitochondrial proton adenosinetriphosphatase proteolipid channel in phospholipid vesicles. Biochemistry. 1982 Sep 28;21(20):4960–4968. doi: 10.1021/bi00263a020. [DOI] [PubMed] [Google Scholar]
- Mao D., Wallace B. A. Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles. Biochemistry. 1984 Jun 5;23(12):2667–2673. doi: 10.1021/bi00307a020. [DOI] [PubMed] [Google Scholar]
- Mitoma J., Ito A. The carboxy-terminal 10 amino acid residues of cytochrome b5 are necessary for its targeting to the endoplasmic reticulum. EMBO J. 1992 Nov;11(11):4197–4203. doi: 10.1002/j.1460-2075.1992.tb05513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muskett F. W., Kelly G. P., Whitford D. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods. J Mol Biol. 1996 Apr 26;258(1):172–189. doi: 10.1006/jmbi.1996.0241. [DOI] [PubMed] [Google Scholar]
- Okada Y., Frey A. B., Guenthner T. M., Oesch F., Sabatini D. D., Kreibich G. Studies on the biosynthesis of microsomal membrane proteins. Site of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P-450 reductase and epoxide hydrolase. Eur J Biochem. 1982 Feb;122(2):393–402. doi: 10.1111/j.1432-1033.1982.tb05894.x. [DOI] [PubMed] [Google Scholar]
- Ozols J. Amino acid sequence of rabbit liver microsomal cytochrome b5. J Biol Chem. 1970 Oct 10;245(19):4863–4874. [PubMed] [Google Scholar]
- Ozols J., Gerard C., Nobrega F. G. Proteolytic cleavage of horse liver cytochrome b5. Primary structure of the heme-containing moiety. J Biol Chem. 1976 Nov 10;251(21):6767–6774. [PubMed] [Google Scholar]
- Ozols J., Heinemann F. S. Chemical structure of rat liver cytochrome b5. Isolation of peptides by high-pressure liquid chromatography. Biochim Biophys Acta. 1982 May 21;704(1):163–173. doi: 10.1016/0167-4838(82)90143-1. [DOI] [PubMed] [Google Scholar]
- Ozols J. Structure of cytochrome b5 and its topology in the microsomal membrane. Biochim Biophys Acta. 1989 Jul 27;997(1-2):121–130. doi: 10.1016/0167-4838(89)90143-x. [DOI] [PubMed] [Google Scholar]
- Pedrazzini E., Villa A., Borgese N. A mutant cytochrome b5 with a lengthened membrane anchor escapes from the endoplasmic reticulum and reaches the plasma membrane. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4207–4212. doi: 10.1073/pnas.93.9.4207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riley M. L., Wallace B. A., Flitsch S. L., Booth P. J. Slow alpha helix formation during folding of a membrane protein. Biochemistry. 1997 Jan 7;36(1):192–196. doi: 10.1021/bi962199r. [DOI] [PubMed] [Google Scholar]
- Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider A. S., Harmatz D. An experimental method correcting for absorption flattening and scattering in suspensions of absorbing particles: circular dichroism and absorption spectra of hemoglobin in situ in red blood cells. Biochemistry. 1976 Sep 21;15(19):4158–4162. doi: 10.1021/bi00664a004. [DOI] [PubMed] [Google Scholar]
- Smith M. A., Stobart A. K., Shewry P. R., Napier J. A. Tobacco cytochrome b5: cDNA isolation, expression analysis and in vitro protein targeting. Plant Mol Biol. 1994 Jun;25(3):527–537. doi: 10.1007/BF00043880. [DOI] [PubMed] [Google Scholar]
- Sonnhammer E. L., von Heijne G., Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol. 1998;6:175–182. [PubMed] [Google Scholar]
- Spatz L., Strittmatter P. A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci U S A. 1971 May;68(5):1042–1046. doi: 10.1073/pnas.68.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takagaki Y., Radhakrishnan R., Wirtz K. W., Khorana H. G. The membrane-embedded segment of cytochrome b5 as studied by cross-linking with photoactivatable phospholipids. II. The nontransferable form. J Biol Chem. 1983 Aug 10;258(15):9136–9142. [PubMed] [Google Scholar]
- Tennyson J., Holloway P. W. Fluorescence studies of cytochrome b5 topography. Incorporation of cytochrome b5 into brominated phosphatidylcholine vesicles by deoxycholate. J Biol Chem. 1986 Oct 25;261(30):14196–14200. [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Truan G., Epinat J. C., Rougeulle C., Cullin C., Pompon D. Cloning and characterization of a yeast cytochrome b5-encoding gene which suppresses ketoconazole hypersensitivity in a NADPH-P-450 reductase-deficient strain. Gene. 1994 May 3;142(1):123–127. doi: 10.1016/0378-1119(94)90366-2. [DOI] [PubMed] [Google Scholar]
- Tusnády G. E., Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol. 1998 Oct 23;283(2):489–506. doi: 10.1006/jmbi.1998.2107. [DOI] [PubMed] [Google Scholar]
- VanDerMark P. K., Steggles A. W. The isolation and characterization of the soluble and membrane-bound porcine cytochrome b5 cDNAs. Biochem Biophys Res Commun. 1997 Nov 7;240(1):80–83. doi: 10.1006/bbrc.1997.7599. [DOI] [PubMed] [Google Scholar]
- Vergères G., Ramsden J., Waskell L. The carboxyl terminus of the membrane-binding domain of cytochrome b5 spans the bilayer of the endoplasmic reticulum. J Biol Chem. 1995 Feb 17;270(7):3414–3422. doi: 10.1074/jbc.270.7.3414. [DOI] [PubMed] [Google Scholar]
- Vergéres G., Waskell L. Cytochrome b5, its functions, structure and membrane topology. Biochimie. 1995;77(7-8):604–620. doi: 10.1016/0300-9084(96)88176-4. [DOI] [PubMed] [Google Scholar]
- Visser L., Robinson N. C., Tanford C. The two-domain structure of cytochrome b5 in deoxycholate solution. Biochemistry. 1975 Mar 25;14(6):1194–1199. doi: 10.1021/bi00677a015. [DOI] [PubMed] [Google Scholar]
- Wallace B. A., Cascio M., Mielke D. L. Evaluation of methods for the prediction of membrane protein secondary structures. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9423–9427. doi: 10.1073/pnas.83.24.9423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. A., Teeters C. L. Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments. Biochemistry. 1987 Jan 13;26(1):65–70. doi: 10.1021/bi00375a010. [DOI] [PubMed] [Google Scholar]
- Wu F. F., Vergères G., Waskell L. Kinetics of the reduction of cytochrome b5 with mutations in its membrane-binding domain. Arch Biochem Biophys. 1994 Feb 1;308(2):380–386. doi: 10.1006/abbi.1994.1054. [DOI] [PubMed] [Google Scholar]
- Yoo M., Steggles A. W. The complete nucleotide sequence of human liver cytochrome b5 mRNA. Biochem Biophys Res Commun. 1988 Oct 14;156(1):576–580. doi: 10.1016/s0006-291x(88)80881-7. [DOI] [PubMed] [Google Scholar]
- Zhang H., Somerville C. The primary structure of chicken liver cytochrome b5 deduced from the DNA sequence of a cDNA clone. Arch Biochem Biophys. 1988 Jul;264(1):343–347. doi: 10.1016/0003-9861(88)90603-0. [DOI] [PubMed] [Google Scholar]
- Zimmerman J. M., Eliezer N., Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol. 1968 Nov;21(2):170–201. doi: 10.1016/0022-5193(68)90069-6. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]