Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Nov 15;352(Pt 1):125–133.

Macrophage cholesteryl ester hydrolases and hormone-sensitive lipase prefer specifically oxidized cholesteryl esters as substrates over their non-oxidized counterparts.

J Belkner 1, H Stender 1, H G Holzhütter 1, C Holm 1, H Kühn 1
PMCID: PMC1221439  PMID: 11062065

Abstract

The oxidative modification of low-density lipoprotein (LDL) has been implicated as a pro-atherogenic process in the pathogenesis of atherosclerosis. Macrophages rapidly take up oxidized LDL via scavenger-receptor-mediated pathways and thereby develop into lipid-laden foam cells. The uptake mechanism has been studied extensively and several types of scavenger receptors have been identified. In contrast, the intracellular fate of oxidized LDL lipids is less well investigated. We studied the degradation of specifically oxidized cholesteryl esters by murine macrophages using an HPLC-based assay, and found that oxidized substrates are hydrolysed preferentially from a 1:1 molar mixture of oxidized and non-oxidized cholesteryl esters. This effect was observed at both neutral and acidic pH. Similar results were obtained with lysates of human monocytes and with pure recombinant human hormone-sensitive lipase. These data suggest that the intracellular oxidation of cholesteryl esters may facilitate intracellular cholesteryl ester hydrolysis, and thus may represent an anti-atherogenic process.

Full Text

The Full Text of this article is available as a PDF (166.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amanuma K., Kanaseki T., Ikeuchi Y., Ohkuma S., Takano T. Studies on fine structure and location of lipids in quick-freeze replicas of atherosclerotic aorta of WHHL rabbits. Virchows Arch A Pathol Anat Histopathol. 1986;410(3):231–238. doi: 10.1007/BF00710829. [DOI] [PubMed] [Google Scholar]
  2. Aqel N. M., Ball R. Y., Waldmann H., Mitchinson M. J. Monocytic origin of foam cells in human atherosclerotic plaques. Atherosclerosis. 1984 Dec;53(3):265–271. doi: 10.1016/0021-9150(84)90127-8. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Belkner J., Stender H., Kühn H. The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. J Biol Chem. 1998 Sep 4;273(36):23225–23232. doi: 10.1074/jbc.273.36.23225. [DOI] [PubMed] [Google Scholar]
  5. Benz D. J., Mol M., Ezaki M., Mori-Ito N., Zelán I., Miyanohara A., Friedmann T., Parthasarathy S., Steinberg D., Witztum J. L. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblast expressing high levels of human 15-lipoxygenase. J Biol Chem. 1995 Mar 10;270(10):5191–5197. doi: 10.1074/jbc.270.10.5191. [DOI] [PubMed] [Google Scholar]
  6. Bocan T. M., Rosebury W. S., Mueller S. B., Kuchera S., Welch K., Daugherty A., Cornicelli J. A. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis. 1998 Feb;136(2):203–216. doi: 10.1016/s0021-9150(97)00204-9. [DOI] [PubMed] [Google Scholar]
  7. Brown M. S., Goldstein J. L., Krieger M., Ho Y. K., Anderson R. G. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol. 1979 Sep;82(3):597–613. doi: 10.1083/jcb.82.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown M. S., Ho Y. K., Goldstein J. L. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem. 1980 Oct 10;255(19):9344–9352. [PubMed] [Google Scholar]
  9. Contreras J. A., Danielsson B., Johansson C., Osterlund T., Langin D., Holm C. Human hormone-sensitive lipase: expression and large-scale purification from a baculovirus/insect cell system. Protein Expr Purif. 1998 Feb;12(1):93–99. doi: 10.1006/prep.1997.0821. [DOI] [PubMed] [Google Scholar]
  10. Contreras J. A., Holm C., Martin A., Gaspar M. L., Lasuncion M. A. Presence of hormone-sensitive lipase mRNA in J774 macrophages. Isr J Med Sci. 1994 Oct;30(10):778–781. [PubMed] [Google Scholar]
  11. Contreras J. A., Lasunción M. A. Essential differences in cholesteryl ester metabolism between human monocyte-derived and J774 macrophages. Evidence against the presence of hormone-sensitive lipase in human macrophages. Arterioscler Thromb. 1994 Mar;14(3):443–452. doi: 10.1161/01.atv.14.3.443. [DOI] [PubMed] [Google Scholar]
  12. Cornicelli J. A., Trivedi B. K. 15-Lipoxygenase and its inhibition: a novel therapeutic target for vascular disease. Curr Pharm Des. 1999 Jan;5(1):11–20. [PubMed] [Google Scholar]
  13. Cyrus T., Witztum J. L., Rader D. J., Tangirala R., Fazio S., Linton M. F., Funk C. D. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest. 1999 Jun;103(11):1597–1604. doi: 10.1172/JCI5897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Durham L. A., 3rd, Grogan W. M. Characterization of multiple forms of cholesteryl ester hydrolase in the rat testis. J Biol Chem. 1984 Jun 25;259(12):7433–7438. [PubMed] [Google Scholar]
  15. Escary J. L., Choy H. A., Reue K., Schotz M. C. Hormone-sensitive lipase overexpression increases cholesteryl ester hydrolysis in macrophage foam cells. Arterioscler Thromb Vasc Biol. 1998 Jun;18(6):991–998. doi: 10.1161/01.atv.18.6.991. [DOI] [PubMed] [Google Scholar]
  16. Escary J. L., Choy H. A., Reue K., Wang X. P., Castellani L. W., Glass C. K., Lusis A. J., Schotz M. C. Paradoxical effect on atherosclerosis of hormone-sensitive lipase overexpression in macrophages. J Lipid Res. 1999 Mar;40(3):397–404. [PubMed] [Google Scholar]
  17. Esterbauer H., Ramos P. Chemistry and pathophysiology of oxidation of LDL. Rev Physiol Biochem Pharmacol. 1996;127:31–64. doi: 10.1007/BFb0048264. [DOI] [PubMed] [Google Scholar]
  18. Fredrikson G., Strålfors P., Nilsson N. O., Belfrage P. Hormone-sensitive lipase of rat adipose tissue. Purification and some properties. J Biol Chem. 1981 Jun 25;256(12):6311–6320. [PubMed] [Google Scholar]
  19. Goldberg D. I., Khoo J. C. Stimulation of a neutral cholesteryl ester hydrolase by cAMP system in P388D1 macrophages. Biochim Biophys Acta. 1990 Jan 16;1042(1):132–137. doi: 10.1016/0005-2760(90)90067-8. [DOI] [PubMed] [Google Scholar]
  20. Graham A., Angell A. D., Jepson C. A., Yeaman S. J., Hassall D. G. Impaired mobilisation of cholesterol from stored cholesteryl esters in human (THP-1) macrophages. Atherosclerosis. 1996 Feb;120(1-2):135–145. doi: 10.1016/0021-9150(95)05695-5. [DOI] [PubMed] [Google Scholar]
  21. Hajjar D. P., Minick C. R., Fowler S. Arterial neutral cholesteryl esterase. A hormone-sensitive enzyme distinct from lysosomal cholesteryl esterase. J Biol Chem. 1983 Jan 10;258(1):192–198. [PubMed] [Google Scholar]
  22. Harte R. A., Hultén L. M., Lindmark H., Reue K., Schotz M. C., Khoo J., Rosenfeld M. E. Low level expression of hormone-sensitive lipase in arterial macrophage-derived foam cells: potential explanation for low rates of cholesteryl ester hydrolysis. Atherosclerosis. 2000 Apr;149(2):343–350. doi: 10.1016/s0021-9150(99)00345-7. [DOI] [PubMed] [Google Scholar]
  23. Heinecke J. W. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis. 1998 Nov;141(1):1–15. doi: 10.1016/s0021-9150(98)00173-7. [DOI] [PubMed] [Google Scholar]
  24. Henriksson P., Hamberg M., Diczfalusy U. Formation of 15-HETE as a major hydroxyeicosatetraenoic acid in the atherosclerotic vessel wall. Biochim Biophys Acta. 1985 Apr 25;834(2):272–274. doi: 10.1016/0005-2760(85)90166-3. [DOI] [PubMed] [Google Scholar]
  25. Heydeck D., Thomas L., Schnurr K., Trebus F., Thierfelder W. E., Ihle J. N., Kühn H. Interleukin-4 and -13 induce upregulation of the murine macrophage 12/15-lipoxygenase activity: evidence for the involvement of transcription factor STAT6. Blood. 1998 Oct 1;92(7):2503–2510. [PubMed] [Google Scholar]
  26. Hiltunen T., Luoma J., Nikkari T., Ylä-Herttuala S. Induction of 15-lipoxygenase mRNA and protein in early atherosclerotic lesions. Circulation. 1995 Dec 1;92(11):3297–3303. doi: 10.1161/01.cir.92.11.3297. [DOI] [PubMed] [Google Scholar]
  27. Inaba T., Shimano H., Gotoda T., Harada K., Shimada M., Kawamura M., Yazaki Y., Yamada N. Macrophage colony-stimulating factor regulates both activities of neutral and acidic cholesteryl ester hydrolases in human monocyte-derived macrophages. J Clin Invest. 1993 Aug;92(2):750–757. doi: 10.1172/JCI116646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ivanov I., Schwarz K., Holzhütter H. G., Myagkova G., Kühn H. Omega-oxidation impairs oxidizability of polyenoic fatty acids by 15-lipoxygenases: consequences for substrate orientation at the active site. Biochem J. 1998 Dec 1;336(Pt 2):345–352. doi: 10.1042/bj3360345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Khoo J. C., Mahoney E. M., Steinberg D. Neutral cholesterol esterase activity in macrophages and its enhancement by cAMP-dependent protein kinase. J Biol Chem. 1981 Dec 25;256(24):12659–12661. [PubMed] [Google Scholar]
  30. Khoo J. C., Reue K., Steinberg D., Schotz M. C. Expression of hormone-sensitive lipase mRNA in macrophages. J Lipid Res. 1993 Nov;34(11):1969–1974. [PubMed] [Google Scholar]
  31. Khoo J. C., Reue K., Steinberg D., Schotz M. C. Expression of hormone-sensitive lipase mRNA in macrophages. J Lipid Res. 1993 Nov;34(11):1969–1974. [PubMed] [Google Scholar]
  32. Khoo J. C., Steinberg D., Huang J. J., Vagelos P. R. Triglyceride, diglyceride, monoglyceride, and cholesterol ester hydrolases in chicken adipose tissue activated by adenosine 3':5'-Monophosphate-dependent protein kinase. Chromatographic resolution and immunochemical differentiation from lipoprotein lipase. J Biol Chem. 1976 May 25;251(10):2882–2890. [PubMed] [Google Scholar]
  33. Klatt P., Esterbauer H. Oxidative hypothesis of atherogenesis. J Cardiovasc Risk. 1996 Aug;3(4):346–351. doi: 10.1177/174182679600300402. [DOI] [PubMed] [Google Scholar]
  34. Kwiterovich P. O., Jr The antiatherogenic role of high-density lipoprotein cholesterol. Am J Cardiol. 1998 Nov 5;82(9A):13Q–21Q. doi: 10.1016/s0002-9149(98)00808-x. [DOI] [PubMed] [Google Scholar]
  35. Kühn H., Belkner J., Suzuki H., Yamamoto S. Oxidative modification of human lipoproteins by lipoxygenases of different positional specificities. J Lipid Res. 1994 Oct;35(10):1749–1759. [PubMed] [Google Scholar]
  36. Kühn H., Belkner J., Zaiss S., Fährenklemper T., Wohlfeil S. Involvement of 15-lipoxygenase in early stages of atherogenesis. J Exp Med. 1994 Jun 1;179(6):1903–1911. doi: 10.1084/jem.179.6.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Li F., Hui D. Y. Modified low density lipoprotein enhances the secretion of bile salt-stimulated cholesterol esterase by human monocyte-macrophages. species-specific difference in macrophage cholesteryl ester hydrolase. J Biol Chem. 1997 Nov 7;272(45):28666–28671. doi: 10.1074/jbc.272.45.28666. [DOI] [PubMed] [Google Scholar]
  38. Mathur S. N., Albright E., Field F. J. Incorporation of lipoxygenase products into cholesteryl esters by acyl-CoA:cholesterol acyltransferase in cholesterol-rich macrophages. Biochem J. 1988 Dec 15;256(3):807–814. doi: 10.1042/bj2560807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mathur S. N., Field F. J. Effect of cholesterol enrichment on 12-hydroxyeicosatetraenoic acid metabolism by mouse peritoneal macrophages. J Lipid Res. 1987 Oct;28(10):1166–1176. [PubMed] [Google Scholar]
  40. Neuzil J., Upston J. M., Witting P. K., Scott K. F., Stocker R. Secretory phospholipase A2 and lipoprotein lipase enhance 15-lipoxygenase-induced enzymic and nonenzymic lipid peroxidation in low-density lipoproteins. Biochemistry. 1998 Jun 23;37(25):9203–9210. doi: 10.1021/bi9730745. [DOI] [PubMed] [Google Scholar]
  41. Osterlund T., Danielsson B., Degerman E., Contreras J. A., Edgren G., Davis R. C., Schotz M. C., Holm C. Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem J. 1996 Oct 15;319(Pt 2):411–420. doi: 10.1042/bj3190411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Osuga J., Ishibashi S., Oka T., Yagyu H., Tozawa R., Fujimoto A., Shionoiri F., Yahagi N., Kraemer F. B., Tsutsumi O. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):787–792. doi: 10.1073/pnas.97.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Paul A., Calleja L., Vilella E., Martínez R., Osada J., Joven J. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice with phenylhydrazine-induced anemia. Atherosclerosis. 1999 Nov 1;147(1):61–68. doi: 10.1016/s0021-9150(99)00164-1. [DOI] [PubMed] [Google Scholar]
  44. Pittman R. C., Khoo J. C., Steinberg D. Cholesterol esterase in rat adipose tissue and its activation by cyclic adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1975 Jun 25;250(12):4505–4511. [PubMed] [Google Scholar]
  45. Pomerantz K. B., Hajjar D. P. High-density-lipoprotein-induced cholesterol efflux from arterial smooth muscle cell derived foam cells: functional relationship of the cholesteryl ester cycle and eicosanoid biosynthesis. Biochemistry. 1990 Feb 20;29(7):1892–1899. doi: 10.1021/bi00459a033. [DOI] [PubMed] [Google Scholar]
  46. Reue K., Cohen R. D., Schotz M. C. Evidence for hormone-sensitive lipase mRNA expression in human monocyte/macrophages. Arterioscler Thromb Vasc Biol. 1997 Dec;17(12):3428–3432. doi: 10.1161/01.atv.17.12.3428. [DOI] [PubMed] [Google Scholar]
  47. Sendobry S. M., Cornicelli J. A., Welch K., Bocan T., Tait B., Trivedi B. K., Colbry N., Dyer R. D., Feinmark S. J., Daugherty A. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br J Pharmacol. 1997 Apr;120(7):1199–1206. doi: 10.1038/sj.bjp.0701007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Shand J. H., Crilly P. J., West D. W. Inhibition of neutral cholesteryl ester hydrolase by a naturally occurring cytosolic protein in macrophages. FEBS Lett. 1993 Apr 26;321(2-3):132–134. doi: 10.1016/0014-5793(93)80093-a. [DOI] [PubMed] [Google Scholar]
  49. Shen J., Herderick E., Cornhill J. F., Zsigmond E., Kim H. S., Kühn H., Guevara N. V., Chan L. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest. 1996 Nov 15;98(10):2201–2208. doi: 10.1172/JCI119029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shen W. J., Patel S., Hong R., Kraemer F. B. Hormone-sensitive lipase functions as an oligomer. Biochemistry. 2000 Mar 7;39(9):2392–2398. doi: 10.1021/bi992283h. [DOI] [PubMed] [Google Scholar]
  51. Small C. A., Goodacre J. A., Yeaman S. J. Hormone-sensitive lipase is responsible for the neutral cholesterol ester hydrolase activity in macrophages. FEBS Lett. 1989 Apr 24;247(2):205–208. doi: 10.1016/0014-5793(89)81335-3. [DOI] [PubMed] [Google Scholar]
  52. Small C. A., Rogers M. P., Goodacre J. A., Yeaman S. J. Phosphorylation and activation of hormone-sensitive lipase in isolated macrophages. FEBS Lett. 1991 Feb 25;279(2):323–326. doi: 10.1016/0014-5793(91)80179-7. [DOI] [PubMed] [Google Scholar]
  53. Sparrow C. P., Parthasarathy S., Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res. 1988 Jun;29(6):745–753. [PubMed] [Google Scholar]
  54. Sun D., Funk C. D. Disruption of 12/15-lipoxygenase expression in peritoneal macrophages. Enhanced utilization of the 5-lipoxygenase pathway and diminished oxidation of low density lipoprotein. J Biol Chem. 1996 Sep 27;271(39):24055–24062. [PubMed] [Google Scholar]
  55. Vercaemst R., Union A., Rosseneu M. Separation and quantitation of free cholesterol and cholesteryl esters in a macrophage cell line by high-performance liquid chromatography. J Chromatogr. 1989 Sep 29;494:43–52. doi: 10.1016/s0378-4347(00)82655-9. [DOI] [PubMed] [Google Scholar]
  56. Watanabe Y., Inaba T., Gotoda T., Harada K., Shimada M., Ohsuga J., Kawamura M., Yazaki Y., Yamada N. Role of macrophage colony-stimulating factor in the initial process of atherosclerosis. Ann N Y Acad Sci. 1995 Jan 17;748:357–366. doi: 10.1111/j.1749-6632.1994.tb17332.x. [DOI] [PubMed] [Google Scholar]
  57. Yamada Y., Doi T., Hamakubo T., Kodama T. Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system. Cell Mol Life Sci. 1998 Jul;54(7):628–640. doi: 10.1007/s000180050191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ylä-Herttuala S., Luoma J., Viita H., Hiltunen T., Sisto T., Nikkari T. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein. J Clin Invest. 1995 Jun;95(6):2692–2698. doi: 10.1172/JCI117971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES