Abstract
A(1) adenosine receptors inhibit adenylate cyclase by activating G(i)/G(o), whereas A(2A) receptors activate G(s). We examined how regions of A(1) and A(2A) receptors regulate coupling to G-proteins by constructing chimaeras in which the third intracellular loops (3ICL or L) and/or the C-termini (or T) were switched. Pertussis toxin (PTX) was used in membrane radioligand binding assays to calculate the fraction of recombinant receptors coupled to G(i)/G(o) and in whole cells to differentially influence agonist-stimulated cAMP accumulation. Switching A(1)/A(2A) 3ICL domains results in receptors that maintain binding selectivity for ligands but are doubly coupled. Receptor chimaeras with an A(1) 3ICL sequence (A(2A)/A(1)L or A(2A)/A(1)LT) respond to agonist stimulation with elevated cAMP despite being coupled predominantly to G(i)/G(o). These chimaeras have basal cAMP levels lower than those of wild-type A(2A) receptors, similar to wild-type A(1) receptors. The A(1) C-terminus modulates the coupling of receptors with A(1) 3ICL such that A(2A)/A(1)LT is better coupled to G(i)/G(o) than A(2A)/A(1)L. The C-terminus has little impact on coupling to receptors containing A(2A) 3ICL sequence. Our results show that the C-terminus sequence selectively facilitates coupling to G(i)/G(o) mediated by A(1) 3ICL and not by other intracellular domains that favour G(i) coupling. The C-terminus sequence has little or no effect on coupling to G(s). For doubly G(s)/G(i)-coupled adenosine receptors in HEK-293 cells, G(s)-mediated stimulation predominates over G(i)/G(o)-mediated inhibition of adenylate cyclase. We discuss the signalling consequences of simultaneously activating opposing G-proteins within single cells.
Full Text
The Full Text of this article is available as a PDF (196.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belardinelli L., Linden J., Berne R. M. The cardiac effects of adenosine. Prog Cardiovasc Dis. 1989 Jul-Aug;32(1):73–97. doi: 10.1016/0033-0620(89)90015-7. [DOI] [PubMed] [Google Scholar]
- Blüml K., Mutschler E., Wess J. Identification of an intracellular tyrosine residue critical for muscarinic receptor-mediated stimulation of phosphatidylinositol hydrolysis. J Biol Chem. 1994 Jan 7;269(1):402–405. [PubMed] [Google Scholar]
- Brooker G., Terasaki W. L., Price M. G. Gammaflow: a completely automated radioimmunoassay system. Science. 1976 Oct 15;194(4262):270–276. doi: 10.1126/science.184530. [DOI] [PubMed] [Google Scholar]
- Burstein E. S., Spalding T. A., Brann M. R. Amino acid side chains that define muscarinic receptor/G-protein coupling. Studies of the third intracellular loop. J Biol Chem. 1996 Feb 9;271(6):2882–2885. doi: 10.1074/jbc.271.6.2882. [DOI] [PubMed] [Google Scholar]
- Cotecchia S., Exum S., Caron M. G., Lefkowitz R. J. Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2896–2900. doi: 10.1073/pnas.87.8.2896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daaka Y., Luttrell L. M., Lefkowitz R. J. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997 Nov 6;390(6655):88–91. doi: 10.1038/36362. [DOI] [PubMed] [Google Scholar]
- Eason M. G., Liggett S. B. Identification of a Gs coupling domain in the amino terminus of the third intracellular loop of the alpha 2A-adrenergic receptor. Evidence for distinct structural determinants that confer Gs versus Gi coupling. J Biol Chem. 1995 Oct 20;270(42):24753–24760. doi: 10.1074/jbc.270.42.24753. [DOI] [PubMed] [Google Scholar]
- Gao Z., Chen T., Weber M. J., Linden J. A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. cross-talk between cyclic AMP and protein kinase c pathways. J Biol Chem. 1999 Feb 26;274(9):5972–5980. doi: 10.1074/jbc.274.9.5972. [DOI] [PubMed] [Google Scholar]
- Hill-Eubanks D., Burstein E. S., Spalding T. A., Bräuner-Osborne H., Brann M. R. Structure of a G-protein-coupling domain of a muscarinic receptor predicted by random saturation mutagenesis. J Biol Chem. 1996 Feb 9;271(6):3058–3065. doi: 10.1074/jbc.271.6.3058. [DOI] [PubMed] [Google Scholar]
- Hunyady L., Bor M., Balla T., Catt K. J. Critical role of a conserved intramembrane tyrosine residue in angiotensin II receptor activation. J Biol Chem. 1995 Apr 28;270(17):9702–9705. doi: 10.1074/jbc.270.17.9702. [DOI] [PubMed] [Google Scholar]
- Högger P., Shockley M. S., Lameh J., Sadée W. Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors. J Biol Chem. 1995 Mar 31;270(13):7405–7410. doi: 10.1074/jbc.270.13.7405. [DOI] [PubMed] [Google Scholar]
- Kobilka B. K., Kobilka T. S., Daniel K., Regan J. W., Caron M. G., Lefkowitz R. J. Chimeric alpha 2-,beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science. 1988 Jun 3;240(4857):1310–1316. doi: 10.1126/science.2836950. [DOI] [PubMed] [Google Scholar]
- Kubo T., Bujo H., Akiba I., Nakai J., Mishina M., Numa S. Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling. FEBS Lett. 1988 Dec 5;241(1-2):119–125. doi: 10.1016/0014-5793(88)81043-3. [DOI] [PubMed] [Google Scholar]
- Lechleiter J., Hellmiss R., Duerson K., Ennulat D., David N., Clapham D., Peralta E. Distinct sequence elements control the specificity of G protein activation by muscarinic acetylcholine receptor subtypes. EMBO J. 1990 Dec;9(13):4381–4390. doi: 10.1002/j.1460-2075.1990.tb07888.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liggett S. B., Caron M. G., Lefkowitz R. J., Hnatowich M. Coupling of a mutated form of the human beta 2-adrenergic receptor to Gi and Gs. Requirement for multiple cytoplasmic domains in the coupling process. J Biol Chem. 1991 Mar 15;266(8):4816–4821. [PubMed] [Google Scholar]
- Linden J. Calculating the dissociation constant of an unlabeled compound from the concentration required to displace radiolabel binding by 50%. J Cyclic Nucleotide Res. 1982;8(3):163–172. [PubMed] [Google Scholar]
- Linden J., Patel A., Sadek S. [125I]Aminobenzyladenosine, a new radioligand with improved specific binding to adenosine receptors in heart. Circ Res. 1985 Feb;56(2):279–284. doi: 10.1161/01.res.56.2.279. [DOI] [PubMed] [Google Scholar]
- Liu J., Blin N., Conklin B. R., Wess J. Molecular mechanisms involved in muscarinic acetylcholine receptor-mediated G protein activation studied by insertion mutagenesis. J Biol Chem. 1996 Mar 15;271(11):6172–6178. doi: 10.1074/jbc.271.11.6172. [DOI] [PubMed] [Google Scholar]
- Luthin D. R., Olsson R. A., Thompson R. D., Sawmiller D. R., Linden J. Characterization of two affinity states of adenosine A2a receptors with a new radioligand, 2-[2-(4-amino-3-[125I]iodophenyl)ethylamino]adenosine. Mol Pharmacol. 1995 Feb;47(2):307–313. [PubMed] [Google Scholar]
- Moro O., Lameh J., Högger P., Sadée W. Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. J Biol Chem. 1993 Oct 25;268(30):22273–22276. [PubMed] [Google Scholar]
- Namba T., Sugimoto Y., Negishi M., Irie A., Ushikubi F., Kakizuka A., Ito S., Ichikawa A., Narumiya S. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature. 1993 Sep 9;365(6442):166–170. doi: 10.1038/365166a0. [DOI] [PubMed] [Google Scholar]
- Nanoff C., Stiles G. L. Solubilization and characterization of the A2-adenosine receptor. J Recept Res. 1993;13(6):961–973. doi: 10.3109/10799899309073703. [DOI] [PubMed] [Google Scholar]
- Negishi M., Irie A., Sugimoto Y., Namba T., Ichikawa A. Selective coupling of prostaglandin E receptor EP3D to Gi and Gs through interaction of alpha-carboxylic acid of agonist and arginine residue of seventh transmembrane domain. J Biol Chem. 1995 Jul 7;270(27):16122–16127. doi: 10.1074/jbc.270.27.16122. [DOI] [PubMed] [Google Scholar]
- O'Dowd B. F., Hnatowich M., Regan J. W., Leader W. M., Caron M. G., Lefkowitz R. J. Site-directed mutagenesis of the cytoplasmic domains of the human beta 2-adrenergic receptor. Localization of regions involved in G protein-receptor coupling. J Biol Chem. 1988 Nov 5;263(31):15985–15992. [PubMed] [Google Scholar]
- Olah M. E. Identification of A2a adenosine receptor domains involved in selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors. J Biol Chem. 1997 Jan 3;272(1):337–344. doi: 10.1074/jbc.272.1.337. [DOI] [PubMed] [Google Scholar]
- Olah M. E., Stiles G. L. Adenosine receptor subtypes: characterization and therapeutic regulation. Annu Rev Pharmacol Toxicol. 1995;35:581–606. doi: 10.1146/annurev.pa.35.040195.003053. [DOI] [PubMed] [Google Scholar]
- Olsson R. A., Pearson J. D. Cardiovascular purinoceptors. Physiol Rev. 1990 Jul;70(3):761–845. doi: 10.1152/physrev.1990.70.3.761. [DOI] [PubMed] [Google Scholar]
- Palmer T. M., Gettys T. W., Stiles G. L. Differential interaction with and regulation of multiple G-proteins by the rat A3 adenosine receptor. J Biol Chem. 1995 Jul 14;270(28):16895–16902. doi: 10.1074/jbc.270.28.16895. [DOI] [PubMed] [Google Scholar]
- Stowell C. P., Kuhlenschmidt T. B., Hoppe C. A. A fluorescamine assay for submicrogram quantities of protein in the presence of Triton X-100. Anal Biochem. 1978 Apr;85(2):572–580. doi: 10.1016/0003-2697(78)90256-7. [DOI] [PubMed] [Google Scholar]
- Tucker A. L., Linden J. Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res. 1993 Jan;27(1):62–67. doi: 10.1093/cvr/27.1.62. [DOI] [PubMed] [Google Scholar]
- Tucker A. L., Robeva A. S., Taylor H. E., Holeton D., Bockner M., Lynch K. R., Linden J. A1 adenosine receptors. Two amino acids are responsible for species differences in ligand recognition. J Biol Chem. 1994 Nov 11;269(45):27900–27906. [PubMed] [Google Scholar]
- Wess J., Brann M. R., Bonner T. I. Identification of a small intracellular region of the muscarinic m3 receptor as a determinant of selective coupling to PI turnover. FEBS Lett. 1989 Nov 20;258(1):133–136. doi: 10.1016/0014-5793(89)81633-3. [DOI] [PubMed] [Google Scholar]
- Wong S. K., Parker E. M., Ross E. M. Chimeric muscarinic cholinergic: beta-adrenergic receptors that activate Gs in response to muscarinic agonists. J Biol Chem. 1990 Apr 15;265(11):6219–6224. [PubMed] [Google Scholar]
- Wong S. K., Ross E. M. Chimeric muscarinic cholinergic:beta-adrenergic receptors that are functionally promiscuous among G proteins. J Biol Chem. 1994 Jul 22;269(29):18968–18976. [PubMed] [Google Scholar]
- Zhou Q. Y., Li C., Olah M. E., Johnson R. A., Stiles G. L., Civelli O. Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7432–7436. doi: 10.1073/pnas.89.16.7432. [DOI] [PMC free article] [PubMed] [Google Scholar]