Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 1;352(Pt 2):241–250.

Iron regulatory proteins in pathobiology.

G Cairo 1, A Pietrangelo 1
PMCID: PMC1221453  PMID: 11085915

Abstract

The capacity of readily exchanging electrons makes iron not only essential for fundamental cell functions, but also a potential catalyst for chemical reactions involving free-radical formation and subsequent oxidative stress and cell damage. Cellular iron levels are therefore carefully regulated in order to maintain an adequate substrate while also minimizing the pool of potentially toxic 'free iron'. Iron homoeostasis is controlled through several genes, an increasing number of which have been found to contain non-coding sequences [i.e. the iron-responsive elements (IREs)] which are recognized at the mRNA level by two cytoplasmic iron-regulatory proteins (IRP-1 and IRP-2). The IRPs belong to the aconitase superfamily. By means of an Fe-S-cluster-dependent switch, IRP-1 can function as an mRNA-binding protein or as an enzyme that converts citrate into isocitrate. Although structurally and functionally similar to IRP-1, IRP-2 does not seem to assemble a cluster nor to possess aconitase activity; moreover, it has a distinct pattern of tissue expression and is modulated by means of proteasome-mediated degradation. In response to fluctuations in the level of the 'labile iron pool', IRPs act as key regulators of cellular iron homoeostasis as a result of the translational control of the expression of a number of iron metabolism-related genes. Conversely, various agents and conditions may affect IRP activity, thereby modulating iron and oxygen radical levels in different pathobiological settings. As the number of mRNAs regulated through IRE-IRP interactions keeps growing, the definition of IRPs as iron-regulatory proteins may in the near future become limiting as their role expands to other essential metabolic pathways.

Full Text

The Full Text of this article is available as a PDF (206.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud S., Haile D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000 Jun 30;275(26):19906–19912. doi: 10.1074/jbc.M000713200. [DOI] [PubMed] [Google Scholar]
  2. Allerson C. R., Cazzola M., Rouault T. A. Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome. J Biol Chem. 1999 Sep 10;274(37):26439–26447. doi: 10.1074/jbc.274.37.26439. [DOI] [PubMed] [Google Scholar]
  3. Aloni R., Peleg D., Meyuhas O. Selective translational control and nonspecific posttranscriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Mol Cell Biol. 1992 May;12(5):2203–2212. doi: 10.1128/mcb.12.5.2203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andersen O., Pantopoulos K., Kao H. T., Muckenthaler M., Youson J. H., Pieribone V. Regulation of iron metabolism in the sanguivore lamprey Lampetra fluviatilis--molecular cloning of two ferritin subunits and two iron-regulatory proteins (IRP) reveals evolutionary conservation of the iron-regulatory element (IRE)/IRP regulatory system. Eur J Biochem. 1998 Jun 1;254(2):223–229. doi: 10.1046/j.1432-1327.1998.2540223.x. [DOI] [PubMed] [Google Scholar]
  5. Arredondo M., Orellana A., Gárate M. A., Núez M. T. Intracellular iron regulates iron absorption and IRP activity in intestinal epithelial (Caco-2) cells. Am J Physiol. 1997 Aug;273(2 Pt 1):G275–G280. doi: 10.1152/ajpgi.1997.273.2.G275. [DOI] [PubMed] [Google Scholar]
  6. Aziz N., Munro H. N. Iron regulates ferritin mRNA translation through a segment of its 5' untranslated region. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8478–8482. doi: 10.1073/pnas.84.23.8478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bahram S., Gilfillan S., Kühn L. C., Moret R., Schulze J. B., Lebeau A., Schümann K. Experimental hemochromatosis due to MHC class I HFE deficiency: immune status and iron metabolism. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13312–13317. doi: 10.1073/pnas.96.23.13312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Balla G., Jacob H. S., Balla J., Rosenberg M., Nath K., Apple F., Eaton J. W., Vercellotti G. M. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992 Sep 5;267(25):18148–18153. [PubMed] [Google Scholar]
  9. Beinert H., Kennedy M. C. Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J. 1993 Dec;7(15):1442–1449. doi: 10.1096/fasebj.7.15.8262329. [DOI] [PubMed] [Google Scholar]
  10. Bianchi L., Tacchini L., Cairo G. HIF-1-mediated activation of transferrin receptor gene transcription by iron chelation. Nucleic Acids Res. 1999 Nov 1;27(21):4223–4227. doi: 10.1093/nar/27.21.4223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bouton C., Hirling H., Drapier J. C. Redox modulation of iron regulatory proteins by peroxynitrite. J Biol Chem. 1997 Aug 8;272(32):19969–19975. doi: 10.1074/jbc.272.32.19969. [DOI] [PubMed] [Google Scholar]
  12. Bouton C., Oliveira L., Drapier J. C. Converse modulation of IRP1 and IRP2 by immunological stimuli in murine RAW 264.7 macrophages. J Biol Chem. 1998 Apr 17;273(16):9403–9408. doi: 10.1074/jbc.273.16.9403. [DOI] [PubMed] [Google Scholar]
  13. Bouton C., Raveau M., Drapier J. C. Modulation of iron regulatory protein functions. Further insights into the role of nitrogen- and oxygen-derived reactive species. J Biol Chem. 1996 Jan 26;271(4):2300–2306. doi: 10.1074/jbc.271.4.2300. [DOI] [PubMed] [Google Scholar]
  14. Brown N. M., Anderson S. A., Steffen D. W., Carpenter T. B., Kennedy M. C., Walden W. E., Eisenstein R. S. Novel role of phosphorylation in Fe-S cluster stability revealed by phosphomimetic mutations at Ser-138 of iron regulatory protein 1. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15235–15240. doi: 10.1073/pnas.95.26.15235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Burdon R. H. Control of cell proliferation by reactive oxygen species. Biochem Soc Trans. 1996 Nov;24(4):1028–1032. doi: 10.1042/bst0241028. [DOI] [PubMed] [Google Scholar]
  16. Butt J., Kim H. Y., Basilion J. P., Cohen S., Iwai K., Philpott C. C., Altschul S., Klausner R. D., Rouault T. A. Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4345–4349. doi: 10.1073/pnas.93.9.4345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cairo G., Bardella L., Schiaffonati L., Arosio P., Levi S., Bernelli-Zazzera A. Multiple mechanisms of iron-induced ferritin synthesis in HeLa cells. Biochem Biophys Res Commun. 1985 Nov 27;133(1):314–321. doi: 10.1016/0006-291x(85)91877-7. [DOI] [PubMed] [Google Scholar]
  18. Cairo G., Castrusini E., Minotti G., Bernelli-Zazzera A. Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory protein activity: a protective stratagem against oxidative injury. FASEB J. 1996 Sep;10(11):1326–1335. doi: 10.1096/fasebj.10.11.8836047. [DOI] [PubMed] [Google Scholar]
  19. Cairo G., Pietrangelo A. Transferrin receptor gene expression during rat liver regeneration. Evidence for post-transcriptional regulation by iron regulatory factorB, a second iron-responsive element-binding protein. J Biol Chem. 1994 Mar 4;269(9):6405–6409. [PubMed] [Google Scholar]
  20. Cairo G., Recalcati S., Montosi G., Castrusini E., Conte D., Pietrangelo A. Inappropriately high iron regulatory protein activity in monocytes of patients with genetic hemochromatosis. Blood. 1997 Apr 1;89(7):2546–2553. [PubMed] [Google Scholar]
  21. Cairo G., Tacchini L., Pietrangelo A. Lack of coordinate control of ferritin and transferrin receptor expression during rat liver regeneration. Hepatology. 1998 Jul;28(1):173–178. doi: 10.1002/hep.510280123. [DOI] [PubMed] [Google Scholar]
  22. Cairo G., Tacchini L., Pogliaghi G., Anzon E., Tomasi A., Bernelli-Zazzera A. Induction of ferritin synthesis by oxidative stress. Transcriptional and post-transcriptional regulation by expansion of the "free" iron pool. J Biol Chem. 1995 Jan 13;270(2):700–703. doi: 10.1074/jbc.270.2.700. [DOI] [PubMed] [Google Scholar]
  23. Canonne-Hergaux F., Gruenheid S., Ponka P., Gros P. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood. 1999 Jun 15;93(12):4406–4417. [PubMed] [Google Scholar]
  24. Cazzola M., Bergamaschi G., Tonon L., Arbustini E., Grasso M., Vercesi E., Barosi G., Bianchi P. E., Cairo G., Arosio P. Hereditary hyperferritinemia-cataract syndrome: relationship between phenotypes and specific mutations in the iron-responsive element of ferritin light-chain mRNA. Blood. 1997 Jul 15;90(2):814–821. [PubMed] [Google Scholar]
  25. Cox T. C., Bawden M. J., Martin A., May B. K. Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. EMBO J. 1991 Jul;10(7):1891–1902. doi: 10.1002/j.1460-2075.1991.tb07715.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dandekar T., Stripecke R., Gray N. K., Goossen B., Constable A., Johansson H. E., Hentze M. W. Identification of a novel iron-responsive element in murine and human erythroid delta-aminolevulinic acid synthase mRNA. EMBO J. 1991 Jul;10(7):1903–1909. doi: 10.1002/j.1460-2075.1991.tb07716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dang C. V., Semenza G. L. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999 Feb;24(2):68–72. doi: 10.1016/s0968-0004(98)01344-9. [DOI] [PubMed] [Google Scholar]
  28. Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000 Feb 17;403(6771):776–781. doi: 10.1038/35001596. [DOI] [PubMed] [Google Scholar]
  29. Drapier J. C., Bouton C. Modulation by nitric oxide of metalloprotein regulatory activities. Bioessays. 1996 Jul;18(7):549–556. doi: 10.1002/bies.950180706. [DOI] [PubMed] [Google Scholar]
  30. Drapier J. C., Hirling H., Wietzerbin J., Kaldy P., Kühn L. C. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 1993 Sep;12(9):3643–3649. doi: 10.1002/j.1460-2075.1993.tb06038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Drapier J. C. Interplay between NO and [Fe-S] clusters: relevance to biological systems. Methods. 1997 Mar;11(3):319–329. doi: 10.1006/meth.1996.0426. [DOI] [PubMed] [Google Scholar]
  32. Eisenstein R. S., Blemings K. P. Iron regulatory proteins, iron responsive elements and iron homeostasis. J Nutr. 1998 Dec;128(12):2295–2298. doi: 10.1093/jn/128.12.2295. [DOI] [PubMed] [Google Scholar]
  33. Epsztejn S., Glickstein H., Picard V., Slotki I. N., Breuer W., Beaumont C., Cabantchik Z. I. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood. 1999 Nov 15;94(10):3593–3603. [PubMed] [Google Scholar]
  34. Festa M., Colonna A., Pietropaolo C., Ruffo A. Oxalomalate, a competitive inhibitor of aconitase, modulates the RNA-binding activity of iron-regulatory proteins. Biochem J. 2000 Jun 1;348(Pt 2):315–320. [PMC free article] [PubMed] [Google Scholar]
  35. Fleming R. E., Migas M. C., Holden C. C., Waheed A., Britton R. S., Tomatsu S., Bacon B. R., Sly W. S. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2214–2219. doi: 10.1073/pnas.040548097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gehring N. H., Hentze M. W., Pantopoulos K. Inactivation of both RNA binding and aconitase activities of iron regulatory protein-1 by quinone-induced oxidative stress. J Biol Chem. 1999 Mar 5;274(10):6219–6225. doi: 10.1074/jbc.274.10.6219. [DOI] [PubMed] [Google Scholar]
  37. Goessling L. S., Mascotti D. P., Thach R. E. Involvement of heme in the degradation of iron-regulatory protein 2. J Biol Chem. 1998 May 15;273(20):12555–12557. doi: 10.1074/jbc.273.20.12555. [DOI] [PubMed] [Google Scholar]
  38. Gray N. K., Pantopoulos K., Dandekar T., Ackrell B. A., Hentze M. W. Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4925–4930. doi: 10.1073/pnas.93.10.4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997 Jul 31;388(6641):482–488. doi: 10.1038/41343. [DOI] [PubMed] [Google Scholar]
  40. Hanson E. S., Foot L. M., Leibold E. A. Hypoxia post-translationally activates iron-regulatory protein 2. J Biol Chem. 1999 Feb 19;274(8):5047–5052. doi: 10.1074/jbc.274.8.5047. [DOI] [PubMed] [Google Scholar]
  41. Hanson E. S., Leibold E. A. Regulation of iron regulatory protein 1 during hypoxia and hypoxia/reoxygenation. J Biol Chem. 1998 Mar 27;273(13):7588–7593. doi: 10.1074/jbc.273.13.7588. [DOI] [PubMed] [Google Scholar]
  42. Hanson E. S., Leibold E. A. Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species. Gene Expr. 1999;7(4-6):367–376. [PMC free article] [PubMed] [Google Scholar]
  43. Henderson B. R. Iron regulatory proteins 1 and 2. Bioessays. 1996 Sep;18(9):739–746. doi: 10.1002/bies.950180909. [DOI] [PubMed] [Google Scholar]
  44. Henderson B. R., Menotti E., Bonnard C., Kühn L. C. Optimal sequence and structure of iron-responsive elements. Selection of RNA stem-loops with high affinity for iron regulatory factor. J Biol Chem. 1994 Jul 1;269(26):17481–17489. [PubMed] [Google Scholar]
  45. Henderson B. R., Menotti E., Kühn L. C. Iron regulatory proteins 1 and 2 bind distinct sets of RNA target sequences. J Biol Chem. 1996 Mar 1;271(9):4900–4908. doi: 10.1074/jbc.271.9.4900. [DOI] [PubMed] [Google Scholar]
  46. Hentze M. W., Kühn L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8175–8182. doi: 10.1073/pnas.93.16.8175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Iwai K., Drake S. K., Wehr N. B., Weissman A. M., LaVaute T., Minato N., Klausner R. D., Levine R. L., Rouault T. A. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4924–4928. doi: 10.1073/pnas.95.9.4924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kawabata H., Germain R. S., Vuong P. T., Nakamaki T., Said J. W., Koeffler H. P. Transferrin receptor 2-alpha supports cell growth both in iron-chelated cultured cells and in vivo. J Biol Chem. 2000 Jun 2;275(22):16618–16625. doi: 10.1074/jbc.M908846199. [DOI] [PubMed] [Google Scholar]
  49. Kawabata H., Yang R., Hirama T., Vuong P. T., Kawano S., Gombart A. F., Koeffler H. P. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem. 1999 Jul 23;274(30):20826–20832. doi: 10.1074/jbc.274.30.20826. [DOI] [PubMed] [Google Scholar]
  50. Ke Y., Wu J., Leibold E. A., Walden W. E., Theil E. C. Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation? J Biol Chem. 1998 Sep 11;273(37):23637–23640. doi: 10.1074/jbc.273.37.23637. [DOI] [PubMed] [Google Scholar]
  51. Kennedy M. C., Antholine W. E., Beinert H. An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J Biol Chem. 1997 Aug 15;272(33):20340–20347. doi: 10.1074/jbc.272.33.20340. [DOI] [PubMed] [Google Scholar]
  52. Kim S., Ponka P. Control of transferrin receptor expression via nitric oxide-mediated modulation of iron-regulatory protein 2. J Biol Chem. 1999 Nov 12;274(46):33035–33042. doi: 10.1074/jbc.274.46.33035. [DOI] [PubMed] [Google Scholar]
  53. Kim S., Ponka P. Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2. J Biol Chem. 2000 Mar 3;275(9):6220–6226. doi: 10.1074/jbc.275.9.6220. [DOI] [PubMed] [Google Scholar]
  54. Kohler S. A., Henderson B. R., Kühn L. C. Succinate dehydrogenase b mRNA of Drosophila melanogaster has a functional iron-responsive element in its 5'-untranslated region. J Biol Chem. 1995 Dec 22;270(51):30781–30786. doi: 10.1074/jbc.270.51.30781. [DOI] [PubMed] [Google Scholar]
  55. Kohler S. A., Menotti E., Kühn L. C. Molecular cloning of mouse glycolate oxidase. High evolutionary conservation and presence of an iron-responsive element-like sequence in the mRNA. J Biol Chem. 1999 Jan 22;274(4):2401–2407. doi: 10.1074/jbc.274.4.2401. [DOI] [PubMed] [Google Scholar]
  56. Konijn A. M., Glickstein H., Vaisman B., Meyron-Holtz E. G., Slotki I. N., Cabantchik Z. I. The cellular labile iron pool and intracellular ferritin in K562 cells. Blood. 1999 Sep 15;94(6):2128–2134. [PubMed] [Google Scholar]
  57. Kwak E. L., Larochelle D. A., Beaumont C., Torti S. V., Torti F. M. Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. J Biol Chem. 1995 Jun 23;270(25):15285–15293. doi: 10.1074/jbc.270.25.15285. [DOI] [PubMed] [Google Scholar]
  58. Land T., Rouault T. A. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell. 1998 Dec;2(6):807–815. doi: 10.1016/s1097-2765(00)80295-6. [DOI] [PubMed] [Google Scholar]
  59. Leibold E. A., Munro H. N. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5' untranslated region of ferritin heavy- and light-subunit mRNAs. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2171–2175. doi: 10.1073/pnas.85.7.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Lok C. N., Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem. 1999 Aug 20;274(34):24147–24152. doi: 10.1074/jbc.274.34.24147. [DOI] [PubMed] [Google Scholar]
  61. Martins E. A., Robalinho R. L., Meneghini R. Oxidative stress induces activation of a cytosolic protein responsible for control of iron uptake. Arch Biochem Biophys. 1995 Jan 10;316(1):128–134. doi: 10.1006/abbi.1995.1019. [DOI] [PubMed] [Google Scholar]
  62. McKie A. T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T. J., Farzaneh F. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000 Feb;5(2):299–309. doi: 10.1016/s1097-2765(00)80425-6. [DOI] [PubMed] [Google Scholar]
  63. Menotti E., Henderson B. R., Kühn L. C. Translational regulation of mRNAs with distinct IRE sequences by iron regulatory proteins 1 and 2. J Biol Chem. 1998 Jan 16;273(3):1821–1824. doi: 10.1074/jbc.273.3.1821. [DOI] [PubMed] [Google Scholar]
  64. Mikulits W., Schranzhofer M., Bauer A., Dolznig H., Lobmayr L., Infante A. A., Beug H., Müllner E. W. Impaired ferritin mRNA translation in primary erythroid progenitors: shift to iron-dependent regulation by the v-ErbA oncoprotein. Blood. 1999 Dec 15;94(12):4321–4332. [PubMed] [Google Scholar]
  65. Minotti G., Cairo G., Monti E. Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J. 1999 Feb;13(2):199–212. [PubMed] [Google Scholar]
  66. Minotti G., Recalcati S., Mordente A., Liberi G., Calafiore A. M., Mancuso C., Preziosi P., Cairo G. The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB J. 1998 May;12(7):541–552. doi: 10.1096/fasebj.12.7.541. [DOI] [PubMed] [Google Scholar]
  67. Muckenthaler M., Gray N. K., Hentze M. W. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol Cell. 1998 Sep;2(3):383–388. doi: 10.1016/s1097-2765(00)80282-8. [DOI] [PubMed] [Google Scholar]
  68. Muckenthaler M., Gunkel N., Frishman D., Cyrklaff A., Tomancak P., Hentze M. W. Iron-regulatory protein-1 (IRP-1) is highly conserved in two invertebrate species--characterization of IRP-1 homologues in Drosophila melanogaster and Caenorhabditis elegans. Eur J Biochem. 1998 Jun 1;254(2):230–237. doi: 10.1046/j.1432-1327.1998.2540230.x. [DOI] [PubMed] [Google Scholar]
  69. Mulero V., Brock J. H. Regulation of iron metabolism in murine J774 macrophages: role of nitric oxide-dependent and -independent pathways following activation with gamma interferon and lipopolysaccharide. Blood. 1999 Oct 1;94(7):2383–2389. [PubMed] [Google Scholar]
  70. Narahari J., Ma R., Wang M., Walden W. E. The aconitase function of iron regulatory protein 1. Genetic studies in yeast implicate its role in iron-mediated redox regulation. J Biol Chem. 2000 May 26;275(21):16227–16234. doi: 10.1074/jbc.M910450199. [DOI] [PubMed] [Google Scholar]
  71. Oliveira L., Bouton C., Drapier J. C. Thioredoxin activation of iron regulatory proteins. Redox regulation of RNA binding after exposure to nitric oxide. J Biol Chem. 1999 Jan 1;274(1):516–521. doi: 10.1074/jbc.274.1.516. [DOI] [PubMed] [Google Scholar]
  72. Oliveira L., Drapier J. C. Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6550–6555. doi: 10.1073/pnas.120571797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Pantopoulos K., Hentze M. W. Activation of iron regulatory protein-1 by oxidative stress in vitro. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10559–10563. doi: 10.1073/pnas.95.18.10559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Pantopoulos K., Hentze M. W. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1267–1271. doi: 10.1073/pnas.92.5.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Pantopoulos K., Hentze M. W. Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J. 1995 Jun 15;14(12):2917–2924. doi: 10.1002/j.1460-2075.1995.tb07291.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Pantopoulos K., Mueller S., Atzberger A., Ansorge W., Stremmel W., Hentze M. W. Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. J Biol Chem. 1997 Apr 11;272(15):9802–9808. doi: 10.1074/jbc.272.15.9802. [DOI] [PubMed] [Google Scholar]
  77. Pantopoulos K., Weiss G., Hentze M. W. Nitric oxide and oxidative stress (H2O2) control mammalian iron metabolism by different pathways. Mol Cell Biol. 1996 Jul;16(7):3781–3788. doi: 10.1128/mcb.16.7.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Pietrangelo A., Casalgrandi G., Quaglino D., Gualdi R., Conte D., Milani S., Montosi G., Cesarini L., Ventura E., Cairo G. Duodenal ferritin synthesis in genetic hemochromatosis. Gastroenterology. 1995 Jan;108(1):208–217. doi: 10.1016/0016-5085(95)90026-8. [DOI] [PubMed] [Google Scholar]
  79. Pietrangelo A., Rocchi E., Casalgrandi G., Rigo G., Ferrari A., Perini M., Ventura E., Cairo G. Regulation of transferrin, transferrin receptor, and ferritin genes in human duodenum. Gastroenterology. 1992 Mar;102(3):802–809. doi: 10.1016/0016-5085(92)90161-q. [DOI] [PubMed] [Google Scholar]
  80. Pietrangelo A., Rocchi E., Ferrari A., Ventura E., Cairo G. Regulation of hepatic transferrin, transferrin receptor and ferritin genes in human siderosis. Hepatology. 1991 Dec;14(6):1083–1089. [PubMed] [Google Scholar]
  81. Pietrangelo A., Rocchi E., Schiaffonati L., Ventura E., Cairo G. Liver gene expression during chronic dietary iron overload in rats. Hepatology. 1990 May;11(5):798–804. doi: 10.1002/hep.1840110513. [DOI] [PubMed] [Google Scholar]
  82. Pourzand C., Watkin R. D., Brown J. E., Tyrrell R. M. Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: the role of ferritin. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6751–6756. doi: 10.1073/pnas.96.12.6751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Qi Y., Jamindar T. M., Dawson G. Hypoxia alters iron homeostasis and induces ferritin synthesis in oligodendrocytes. J Neurochem. 1995 Jun;64(6):2458–2464. doi: 10.1046/j.1471-4159.1995.64062458.x. [DOI] [PubMed] [Google Scholar]
  84. Recalcati S., Conte D., Cairo G. Preferential activation of iron regulatory protein-2 in cell lines as a result of higher sensitivity to iron. Eur J Biochem. 1999 Jan;259(1-2):304–309. doi: 10.1046/j.1432-1327.1999.00038.x. [DOI] [PubMed] [Google Scholar]
  85. Recalcati S., Pometta R., Levi S., Conte D., Cairo G. Response of monocyte iron regulatory protein activity to inflammation: abnormal behavior in genetic hemochromatosis. Blood. 1998 Apr 1;91(7):2565–2572. [PubMed] [Google Scholar]
  86. Recalcati S., Taramelli D., Conte D., Cairo G. Nitric oxide-mediated induction of ferritin synthesis in J774 macrophages by inflammatory cytokines: role of selective iron regulatory protein-2 downregulation. Blood. 1998 Feb 1;91(3):1059–1066. [PubMed] [Google Scholar]
  87. Rolfs A., Kvietikova I., Gassmann M., Wenger R. H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J Biol Chem. 1997 Aug 8;272(32):20055–20062. doi: 10.1074/jbc.272.32.20055. [DOI] [PubMed] [Google Scholar]
  88. Rothenberger S., Müllner E. W., Kühn L. C. The mRNA-binding protein which controls ferritin and transferrin receptor expression is conserved during evolution. Nucleic Acids Res. 1990 Mar 11;18(5):1175–1179. doi: 10.1093/nar/18.5.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Rouault T. A., Klausner R. D. The impact of oxidative stress on eukaryotic iron metabolism. EXS. 1996;77:183–197. doi: 10.1007/978-3-0348-9088-5_12. [DOI] [PubMed] [Google Scholar]
  90. Rouault T. A., Tang C. K., Kaptain S., Burgess W. H., Haile D. J., Samaniego F., McBride O. W., Harford J. B., Klausner R. D. Cloning of the cDNA encoding an RNA regulatory protein--the human iron-responsive element-binding protein. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7958–7962. doi: 10.1073/pnas.87.20.7958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Schalinske K. L., Blemings K. P., Steffen D. W., Chen O. S., Eisenstein R. S. Iron regulatory protein 1 is not required for the modulation of ferritin and transferrin receptor expression by iron in a murine pro-B lymphocyte cell line. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10681–10686. doi: 10.1073/pnas.94.20.10681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Schalinske K. L., Chen O. S., Eisenstein R. S. Iron differentially stimulates translation of mitochondrial aconitase and ferritin mRNAs in mammalian cells. Implications for iron regulatory proteins as regulators of mitochondrial citrate utilization. J Biol Chem. 1998 Feb 6;273(6):3740–3746. doi: 10.1074/jbc.273.6.3740. [DOI] [PubMed] [Google Scholar]
  93. Schalinske K. L., Eisenstein R. S. Phosphorylation and activation of both iron regulatory proteins 1 and 2 in HL-60 cells. J Biol Chem. 1996 Mar 22;271(12):7168–7176. doi: 10.1074/jbc.271.12.7168. [DOI] [PubMed] [Google Scholar]
  94. Schümann K., Moret R., Künzle H., Kühn L. C. Iron regulatory protein as an endogenous sensor of iron in rat intestinal mucosa. Possible implications for the regulation of iron absorption. Eur J Biochem. 1999 Mar;260(2):362–372. doi: 10.1046/j.1432-1327.1999.00155.x. [DOI] [PubMed] [Google Scholar]
  95. Seiser C., Teixeira S., Kühn L. C. Interleukin-2-dependent transcriptional and post-transcriptional regulation of transferrin receptor mRNA. J Biol Chem. 1993 Jun 25;268(18):13074–13080. [PubMed] [Google Scholar]
  96. Semenza G. L. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol. 2000 Jan 1;59(1):47–53. doi: 10.1016/s0006-2952(99)00292-0. [DOI] [PubMed] [Google Scholar]
  97. Smith A. G., Clothier B., Robinson S., Scullion M. J., Carthew P., Edwards R., Luo J., Lim C. K., Toledano M. Interaction between iron metabolism and 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice with variants of the Ahr gene: a hepatic oxidative mechanism. Mol Pharmacol. 1998 Jan;53(1):52–61. doi: 10.1124/mol.53.1.52. [DOI] [PubMed] [Google Scholar]
  98. Tacchini L., Bianchi L., Bernelli-Zazzera A., Cairo G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem. 1999 Aug 20;274(34):24142–24146. doi: 10.1074/jbc.274.34.24142. [DOI] [PubMed] [Google Scholar]
  99. Tacchini L., Recalcati S., Bernelli-Zazzera A., Cairo G. Induction of ferritin synthesis in ischemic-reperfused rat liver: analysis of the molecular mechanisms. Gastroenterology. 1997 Sep;113(3):946–953. doi: 10.1016/s0016-5085(97)70191-4. [DOI] [PubMed] [Google Scholar]
  100. Tang Y., Guest J. R. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology. 1999 Nov;145(Pt 11):3069–3079. doi: 10.1099/00221287-145-11-3069. [DOI] [PubMed] [Google Scholar]
  101. Teixeira S., Kühn L. C. Post-transcriptional regulation of the transferrin receptor and 4F2 antigen heavy chain mRNA during growth activation of spleen cells. Eur J Biochem. 1991 Dec 18;202(3):819–826. doi: 10.1111/j.1432-1033.1991.tb16438.x. [DOI] [PubMed] [Google Scholar]
  102. Testa U., Kühn L., Petrini M., Quaranta M. T., Pelosi E., Peschle C. Differential regulation of iron regulatory element-binding protein(s) in cell extracts of activated lymphocytes versus monocytes-macrophages. J Biol Chem. 1991 Jul 25;266(21):13925–13930. [PubMed] [Google Scholar]
  103. Theil E. C. Targeting mRNA to regulate iron and oxygen metabolism. Biochem Pharmacol. 2000 Jan 1;59(1):87–93. doi: 10.1016/s0006-2952(99)00300-7. [DOI] [PubMed] [Google Scholar]
  104. Toth I., Yuan L., Rogers J. T., Boyce H., Bridges K. R. Hypoxia alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in human hepatoma and erythroleukemia cells. J Biol Chem. 1999 Feb 12;274(7):4467–4473. doi: 10.1074/jbc.274.7.4467. [DOI] [PubMed] [Google Scholar]
  105. Vile G. F., Tyrrell R. M. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem. 1993 Jul 15;268(20):14678–14681. [PubMed] [Google Scholar]
  106. Walden W. E., Thach R. E. Translational control of gene expression in a normal fibroblast. Characterization of a subclass of mRNAs with unusual kinetic properties. Biochemistry. 1986 Apr 22;25(8):2033–2041. doi: 10.1021/bi00356a030. [DOI] [PubMed] [Google Scholar]
  107. Wardrop S. L., Richardson D. R. The effect of intracellular iron concentration and nitrogen monoxide on Nramp2 expression and non-transferrin-bound iron uptake. Eur J Biochem. 1999 Jul;263(1):41–49. doi: 10.1046/j.1432-1327.1999.00447.x. [DOI] [PubMed] [Google Scholar]
  108. Wardrop S. L., Watts R. N., Richardson D. R. Nitrogen monoxide activates iron regulatory protein 1 RNA-binding activity by two possible mechanisms: effect on the [4Fe-4S] cluster and iron mobilization from cells. Biochemistry. 2000 Mar 14;39(10):2748–2758. doi: 10.1021/bi991099t. [DOI] [PubMed] [Google Scholar]
  109. Weiss G., Goossen B., Doppler W., Fuchs D., Pantopoulos K., Werner-Felmayer G., Wachter H., Hentze M. W. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J. 1993 Sep;12(9):3651–3657. doi: 10.1002/j.1460-2075.1993.tb06039.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Weiss G., Werner-Felmayer G., Werner E. R., Grünewald K., Wachter H., Hentze M. W. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med. 1994 Sep 1;180(3):969–976. doi: 10.1084/jem.180.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. White K., Munro H. N. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels. J Biol Chem. 1988 Jun 25;263(18):8938–8942. [PubMed] [Google Scholar]
  112. Wu K. J., Polack A., Dalla-Favera R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science. 1999 Jan 29;283(5402):676–679. doi: 10.1126/science.283.5402.676. [DOI] [PubMed] [Google Scholar]
  113. Zoller H., Pietrangelo A., Vogel W., Weiss G. Duodenal metal-transporter (DMT-1, NRAMP-2) expression in patients with hereditary haemochromatosis. Lancet. 1999 Jun 19;353(9170):2120–2123. doi: 10.1016/S0140-6736(98)11179-0. [DOI] [PubMed] [Google Scholar]
  114. Zähringer J., Baliga B. S., Munro H. N. Novel mechanism for translational control in regulation of ferritin synthesis by iron. Proc Natl Acad Sci U S A. 1976 Mar;73(3):857–861. doi: 10.1073/pnas.73.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES