Abstract
The structure of the Escherichia coli flavodoxin NADP(+) oxidoreductase (FLDR) places three arginines (R144, R174 and R184) in the proposed NADPH-binding site. Mutant enzymes produced by site-directed mutagenesis, in which each arginine was replaced by neutral alanine, were characterized. All mutants exhibited decreased NADPH-dependent cytochrome c reductase activity (R144A, 241.6 min(-1); R174A, 132.1 min(-1); R184A, 305.5 min(-1) versus wild type, 338.9 min(-1)) and increased K(m) for NADPH (R144A, 5.3 microM; R174A, 20.2 microM; R184A, 54.4 microM versus wild type, 3.9 microM). The k(cat) value for NADH-dependent cytochrome c reduction was increased for R174A (42.3 min(-1)) and R184A (50.4 min(-1)) compared with the wild type (33.0 min(-1)), consistent with roles for R174 and R184 in discriminating between NADPH/NADH by interaction with the adenosine ribose 2'-phosphate. Stopped-flow studies indicated that affinity (K(d)) for NADPH was markedly reduced in mutants R144A (635 microM) and R184A (2.3 mM) compared with the wild type (<5 microM). Mutant R184A displays the greatest change in pyridine nucleotide preference, with the NADH/NADPH K(d) ratio >175-fold lower than for wild-type FLDR. The rate constant for hydride transfer from NADPH to flavin was lowest for R174A (k(red)=8.82 s(-1) versus 22.63 s(-1) for the wild type), which also exhibited tertiary structure perturbation, as evidenced by alterations in CD and fluorescence spectra. Molecular modelling indicated that movement of the C-terminal tryptophan (W248) of FLDR is necessary to permit close approach of the nicotinamide ring of NADPH to the flavin. The positions of NADPH phosphates in the modelled structure are consistent with the kinetic data, with R174 and R184 located close to the adenosine ribose 2'-phosphate group, and R144 likely to interact with the nicotinamide ribose 5'-phosphate group.
Full Text
The Full Text of this article is available as a PDF (309.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bianchi V., Haggård-Ljungquist E., Pontis E., Reichard P. Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat. J Bacteriol. 1995 Aug;177(15):4528–4531. doi: 10.1128/jb.177.15.4528-4531.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianchi V., Reichard P., Eliasson R., Pontis E., Krook M., Jörnvall H., Haggård-Ljungquist E. Escherichia coli ferredoxin NADP+ reductase: activation of E. coli anaerobic ribonucleotide reduction, cloning of the gene (fpr), and overexpression of the protein. J Bacteriol. 1993 Mar;175(6):1590–1595. doi: 10.1128/jb.175.6.1590-1595.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaschkowski H. P., Neuer G., Ludwig-Festl M., Knappe J. Routes of flavodoxin and ferredoxin reduction in Escherichia coli. CoA-acylating pyruvate: flavodoxin and NADPH: flavodoxin oxidoreductases participating in the activation of pyruvate formate-lyase. Eur J Biochem. 1982 Apr;123(3):563–569. [PubMed] [Google Scholar]
- Correll C. C., Ludwig M. L., Bruns C. M., Karplus P. A. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin. Protein Sci. 1993 Dec;2(12):2112–2133. doi: 10.1002/pro.5560021212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujii K., Huennekens F. M. Activation of methionine synthetase by a reduced triphosphopyridine nucleotide-dependent flavoprotein system. J Biol Chem. 1974 Nov 10;249(21):6745–6753. [PubMed] [Google Scholar]
- Geller D. A., Lowenstein C. J., Shapiro R. A., Nussler A. K., Di Silvio M., Wang S. C., Nakayama D. K., Simmons R. L., Snyder S. H., Billiar T. R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491–3495. doi: 10.1073/pnas.90.8.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gowri G., Campbell W. H. cDNA Clones for Corn Leaf NADH:Nitrate Reductase and Chloroplast NAD(P):Glyceraldehyde-3-Phosphate Dehydrogenase : Characterization of the Clones and Analysis of the Expression of the Genes in Leaves as Influenced by Nitrate in the Light and Dark. Plant Physiol. 1989 Jul;90(3):792–798. doi: 10.1104/pp.90.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall A. V., Antoniou H., Wang Y., Cheung A. H., Arbus A. M., Olson S. L., Lu W. C., Kau C. L., Marsden P. A. Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem. 1994 Dec 30;269(52):33082–33090. [PubMed] [Google Scholar]
- Haniu M., McManus M. E., Birkett D. J., Lee T. D., Shively J. E. Structural and functional analysis of NADPH-cytochrome P-450 reductase from human liver: complete sequence of human enzyme and NADPH-binding sites. Biochemistry. 1989 Oct 17;28(21):8639–8645. doi: 10.1021/bi00447a054. [DOI] [PubMed] [Google Scholar]
- Harvey R. A. Flavin 1,N6-ethenoadenine dinucleotide. Methods Enzymol. 1980;66:290–294. doi: 10.1016/0076-6879(80)66471-4. [DOI] [PubMed] [Google Scholar]
- Ingelman M., Bianchi V., Eklund H. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution. J Mol Biol. 1997 Apr 25;268(1):147–157. doi: 10.1006/jmbi.1997.0957. [DOI] [PubMed] [Google Scholar]
- Janssens S. P., Shimouchi A., Quertermous T., Bloch D. B., Bloch K. D. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem. 1992 Jul 25;267(21):14519–14522. [PubMed] [Google Scholar]
- Jenkins C. M., Waterman M. R. Flavodoxin and NADPH-flavodoxin reductase from Escherichia coli support bovine cytochrome P450c17 hydroxylase activities. J Biol Chem. 1994 Nov 4;269(44):27401–27408. [PubMed] [Google Scholar]
- Karplus P. A., Daniels M. J., Herriott J. R. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science. 1991 Jan 4;251(4989):60–66. [PubMed] [Google Scholar]
- Karplus P. A., Walsh K. A., Herriott J. R. Amino acid sequence of spinach ferredoxin:NADP+ oxidoreductase. Biochemistry. 1984 Dec 18;23(26):6576–6583. doi: 10.1021/bi00321a046. [DOI] [PubMed] [Google Scholar]
- Liochev S. I., Hausladen A., Beyer W. F., Jr, Fridovich I. NADPH: ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1328–1331. doi: 10.1073/pnas.91.4.1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu G., Campbell W. H., Schneider G., Lindqvist Y. Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationship to other flavoprotein reductases. Structure. 1994 Sep 15;2(9):809–821. doi: 10.1016/s0969-2126(94)00082-4. [DOI] [PubMed] [Google Scholar]
- McIver L., Leadbeater C., Campopiano D. J., Baxter R. L., Daff S. N., Chapman S. K., Munro A. W. Characterisation of flavodoxin NADP+ oxidoreductase and flavodoxin; key components of electron transfer in Escherichia coli. Eur J Biochem. 1998 Nov 1;257(3):577–585. doi: 10.1046/j.1432-1327.1998.2570577.x. [DOI] [PubMed] [Google Scholar]
- Munro A. W., Daff S., Coggins J. R., Lindsay J. G., Chapman S. K. Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur J Biochem. 1996 Jul 15;239(2):403–409. doi: 10.1111/j.1432-1033.1996.0403u.x. [DOI] [PubMed] [Google Scholar]
- Nishida H., Inaka K., Yamanaka M., Kaida S., Kobayashi K., Miki K. Crystal structure of NADH-cytochrome b5 reductase from pig liver at 2.4 A resolution. Biochemistry. 1995 Mar 7;34(9):2763–2767. doi: 10.1021/bi00009a004. [DOI] [PubMed] [Google Scholar]
- Ozols J., Korza G., Heinemann F. S., Hediger M. A., Strittmatter P. Complete amino acid sequence of steer liver microsomal NADH-cytochrome b5 reductase. J Biol Chem. 1985 Oct 5;260(22):11953–11961. [PubMed] [Google Scholar]
- Porter T. D. An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem Sci. 1991 Apr;16(4):154–158. doi: 10.1016/0968-0004(91)90059-5. [DOI] [PubMed] [Google Scholar]
- Porter T. D., Kasper C. B. Coding nucleotide sequence of rat NADPH-cytochrome P-450 oxidoreductase cDNA and identification of flavin-binding domains. Proc Natl Acad Sci U S A. 1985 Feb;82(4):973–977. doi: 10.1073/pnas.82.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reichard P. The anaerobic ribonucleotide reductase from Escherichia coli. J Biol Chem. 1993 Apr 25;268(12):8383–8386. [PubMed] [Google Scholar]
- Ruettinger R. T., Wen L. P., Fulco A. J. Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem. 1989 Jul 5;264(19):10987–10995. [PubMed] [Google Scholar]
- SHIN M., ARNON D. I. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS. J Biol Chem. 1965 Mar;240:1405–1411. [PubMed] [Google Scholar]
- Sanyal I., Cohen G., Flint D. H. Biotin synthase: purification, characterization as a [2Fe-2S]cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry. 1994 Mar 29;33(12):3625–3631. doi: 10.1021/bi00178a020. [DOI] [PubMed] [Google Scholar]
- Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
- Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
- Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]