Abstract
We have examined whether oxidized low-density lipoprotein (ox-LDL) affects the function of tissue-factor-pathway inhibitor (TFPI), an anti-coagulant regulator in the extrinsic pathway of coagulation, in cultured human umbilical vein endothelial cells (HUVEC). Treatment of culture medium of HUVEC with ox-LDL, but not with native or acetylated LDLs, drastically decreased the reactivity of TFPI to its antibody specific for Kunitz domain 1 or one specific for the conformation between Kunitz 1 and 2 of TFPI, and caused a rapid, concentration-dependent decrease in the functional activity of TFPI to inhibit Factor X activation. When 5 ng of recombinant TFPI (rTFPI) was mixed with 10 microg of ox-LDL for 30 min, almost all of the rTFPI was detected in the ox-LDL fraction and no free rTFPI was observed on non-denaturing PAGE, in contrast with the virtual absence of rTFPI in the native LDL fraction. Ox-LDL decreased the antigen level of TFPI in the lysate of HUVEC in a time-dependent manner. It did not affect the mRNA level, but ox-LDL-dependent reduction of the TFPI antigen level in HUVEC was reversed by the simultaneous treatment of ox-LDL with bafilomycin A1, an inhibitor of the lysosomal proton pump. These results indicate that ox-LDL lessens the anti-coagulant function of TFPI through both oxidative modification and accelerated degradation of the molecule outside and inside HUVEC respectively.
Full Text
The Full Text of this article is available as a PDF (208.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abumiya T., Nakamura S., Takenaka A., Takenaka O., Yoshikuni Y., Miyamoto S., Kimura T., Enjyoji K., Kato H. Response of plasma tissue factor pathway inhibitor to diet-induced hypercholesterolemia in crab-eating monkeys. Arterioscler Thromb. 1994 Mar;14(3):483–488. doi: 10.1161/01.atv.14.3.483. [DOI] [PubMed] [Google Scholar]
- Acton S. L., Scherer P. E., Lodish H. F., Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem. 1994 Aug 19;269(33):21003–21009. [PubMed] [Google Scholar]
- Adachi H., Tsujimoto M., Arai H., Inoue K. Expression cloning of a novel scavenger receptor from human endothelial cells. J Biol Chem. 1997 Dec 12;272(50):31217–31220. doi: 10.1074/jbc.272.50.31217. [DOI] [PubMed] [Google Scholar]
- Bajaj M. S., Kuppuswamy M. N., Saito H., Spitzer S. G., Bajaj S. P. Cultured normal human hepatocytes do not synthesize lipoprotein-associated coagulation inhibitor: evidence that endothelium is the principal site of its synthesis. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8869–8873. doi: 10.1073/pnas.87.22.8869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bajaj M. S., Rana S. V., Wysolmerski R. B., Bajaj S. P. Inhibitor of the factor VIIa-tissue factor complex is reduced in patients with disseminated intravascular coagulation but not in patients with severe hepatocellular disease. J Clin Invest. 1987 Jun;79(6):1874–1878. doi: 10.1172/JCI113030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broze G. J., Jr, Girard T. J., Novotny W. F. Regulation of coagulation by a multivalent Kunitz-type inhibitor. Biochemistry. 1990 Aug 21;29(33):7539–7546. doi: 10.1021/bi00485a001. [DOI] [PubMed] [Google Scholar]
- Broze G. J., Jr, Miletich J. P. Characterization of the inhibition of tissue factor in serum. Blood. 1987 Jan;69(1):150–155. [PubMed] [Google Scholar]
- Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
- Ettelaie C., Haris P. I., James N. J., Wilbourn B., Adam J. M., Bruckdorfer K. R. Alterations in the structure of apolipoprotein B-100 determine the behaviour of LDL towards thromboplastin. Biochim Biophys Acta. 1997 Apr 21;1345(3):237–247. doi: 10.1016/s0005-2760(96)00185-3. [DOI] [PubMed] [Google Scholar]
- Ettelaie C., Wilbourn B. R., Adam J. M., James N. J., Bruckdorfer K. R. Comparison of the inhibitory effects of ApoB100 and tissue factor pathway inhibitor on tissue factor and the influence of lipoprotein oxidation. Arterioscler Thromb Vasc Biol. 1999 Jul;19(7):1784–1790. doi: 10.1161/01.atv.19.7.1784. [DOI] [PubMed] [Google Scholar]
- Fenteany G., Standaert R. F., Lane W. S., Choi S., Corey E. J., Schreiber S. L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995 May 5;268(5211):726–731. doi: 10.1126/science.7732382. [DOI] [PubMed] [Google Scholar]
- Girard T. J., Warren L. A., Novotny W. F., Bejcek B. E., Miletich J. P., Broze G. J., Jr Identification of the 1.4 kb and 4.0 kb messages for the lipoprotein associated coagulation inhibitor and expression of the encoded protein. Thromb Res. 1989 Jul 1;55(1):37–50. doi: 10.1016/0049-3848(89)90454-4. [DOI] [PubMed] [Google Scholar]
- Girard T. J., Warren L. A., Novotny W. F., Likert K. M., Brown S. G., Miletich J. P., Broze G. J., Jr Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Nature. 1989 Apr 6;338(6215):518–520. doi: 10.1038/338518a0. [DOI] [PubMed] [Google Scholar]
- Hansen J. B., Huseby K. R., Huseby N. E., Ezban M., Nordøy A. Tissue factor pathway inhibitor in complex with low density lipoprotein isolated from human plasma does not possess anticoagulant function in tissue factor-induced coagulation in vitro. Thromb Res. 1997 Mar 1;85(5):413–425. doi: 10.1016/s0049-3848(97)00029-7. [DOI] [PubMed] [Google Scholar]
- Hansen J. B., Huseby N. E., Sandset P. M., Svensson B., Lyngmo V., Nordøy A. Tissue-factor pathway inhibitor and lipoproteins. Evidence for association with and regulation by LDL in human plasma. Arterioscler Thromb. 1994 Feb;14(2):223–229. doi: 10.1161/01.atv.14.2.223. [DOI] [PubMed] [Google Scholar]
- Horie S., Kizaki K., Ishii H., Kazama M. Retinoic acid stimulates expression of thrombomodulin, a cell surface anticoagulant glycoprotein, on human endothelial cells. Differences between up-regulation of thrombomodulin by retinoic acid and cyclic AMP. Biochem J. 1992 Jan 1;281(Pt 1):149–154. doi: 10.1042/bj2810149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishii H., Kizaki K., Horie S., Kazama M. Oxidized low density lipoprotein reduces thrombomodulin transcription in cultured human endothelial cells through degradation of the lipoprotein in lysosomes. J Biol Chem. 1996 Apr 5;271(14):8458–8465. doi: 10.1074/jbc.271.14.8458. [DOI] [PubMed] [Google Scholar]
- Itabe H., Takeshima E., Iwasaki H., Kimura J., Yoshida Y., Imanaka T., Takano T. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem. 1994 May 27;269(21):15274–15279. [PubMed] [Google Scholar]
- Jensen T. J., Loo M. A., Pind S., Williams D. B., Goldberg A. L., Riordan J. R. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell. 1995 Oct 6;83(1):129–135. doi: 10.1016/0092-8674(95)90241-4. [DOI] [PubMed] [Google Scholar]
- Kita T., Nagano Y., Yokode M., Ishii K., Kume N., Ooshima A., Yoshida H., Kawai C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5928–5931. doi: 10.1073/pnas.84.16.5928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosugi K., Morel D. W., DiCorleto P. E., Chisolm G. M. Toxicity of oxidized low-density lipoprotein to cultured fibroblasts is selective for S phase of the cell cycle. J Cell Physiol. 1987 Mar;130(3):311–320. doi: 10.1002/jcp.1041300302. [DOI] [PubMed] [Google Scholar]
- Kume N., Arai H., Kawai C., Kita T. Receptors for modified low-density lipoproteins on human endothelial cells: different recognition for acetylated low-density lipoprotein and oxidized low-density lipoprotein. Biochim Biophys Acta. 1991 Jan 10;1091(1):63–67. doi: 10.1016/0167-4889(91)90223-k. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lesnik P., Dentan C., Vonica A., Moreau M., Chapman M. J. Tissue factor pathway inhibitor activity associated with LDL is inactivated by cell- and copper-mediated oxidation. Arterioscler Thromb Vasc Biol. 1995 Aug;15(8):1121–1130. doi: 10.1161/01.atv.15.8.1121. [DOI] [PubMed] [Google Scholar]
- Naganuma S., Kuzuya N., Sakai K., Hasumi K., Endo A. Inhibition of the accumulation of lipid droplets in macrophage J774 by bafilomycin B1 and destruxin E. Biochim Biophys Acta. 1992 Jun 5;1126(1):41–48. doi: 10.1016/0005-2760(92)90214-g. [DOI] [PubMed] [Google Scholar]
- Nakahara Y., Miyata T., Hamuro T., Funatsu A., Miyagi M., Tsunasawa S., Kato H. Amino acid sequence and carbohydrate structure of a recombinant human tissue factor pathway inhibitor expressed in Chinese hamster ovary cells: one N-and two O-linked carbohydrate chains are located between Kunitz domains 2 and 3 and one N-linked carbohydrate chain is in Kunitz domain 2. Biochemistry. 1996 May 21;35(20):6450–6459. doi: 10.1021/bi9524880. [DOI] [PubMed] [Google Scholar]
- Novotny W. F., Brown S. G., Miletich J. P., Rader D. J., Broze G. J., Jr Plasma antigen levels of the lipoprotein-associated coagulation inhibitor in patient samples. Blood. 1991 Jul 15;78(2):387–393. [PubMed] [Google Scholar]
- Redgrave T. G., Roberts D. C., West C. E. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 1975 May 12;65(1-2):42–49. doi: 10.1016/0003-2697(75)90488-1. [DOI] [PubMed] [Google Scholar]
- Regnström J., Nilsson J., Tornvall P., Landou C., Hamsten A. Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet. 1992 May 16;339(8803):1183–1186. doi: 10.1016/0140-6736(92)91129-v. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
- Salonen J. T., Ylä-Herttuala S., Yamamoto R., Butler S., Korpela H., Salonen R., Nyyssönen K., Palinski W., Witztum J. L. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992 Apr 11;339(8798):883–887. doi: 10.1016/0140-6736(92)90926-t. [DOI] [PubMed] [Google Scholar]
- Sanders N. L., Bajaj S. P., Zivelin A., Rapaport S. I. Inhibition of tissue factor/factor VIIa activity in plasma requires factor X and an additional plasma component. Blood. 1985 Jul;66(1):204–212. [PubMed] [Google Scholar]
- Sandset P. M., Abildgaard U., Larsen M. L. Heparin induces release of extrinsic coagulation pathway inhibitor (EPI). Thromb Res. 1988 Jun 15;50(6):803–813. doi: 10.1016/0049-3848(88)90340-4. [DOI] [PubMed] [Google Scholar]
- Sandset P. M., Larsen M. L., Abildgaard U., Lindahl A. K., Odegaard O. R. Chromogenic substrate assay of extrinsic pathway inhibitor (EPI): levels in the normal population and relation to cholesterol. Blood Coagul Fibrinolysis. 1991 Jun;2(3):425–433. [PubMed] [Google Scholar]
- Sato N., Kokame K., Miyata T., Kato H. Lysophosphatidylcholine decreases the synthesis of tissue factor pathway inhibitor in human umbilical vein endothelial cells. Thromb Haemost. 1998 Jan;79(1):217–221. [PubMed] [Google Scholar]
- Sato Y., Asada Y., Marutsuka K., Hatakeyama K., Kamikubo Y., Sumiyoshi A. Tissue factor pathway inhibitor inhibits aortic smooth muscle cell migration induced by tissue factor/factor VIIa complex. Thromb Haemost. 1997 Sep;78(3):1138–1141. [PubMed] [Google Scholar]
- Sawamura T., Kume N., Aoyama T., Moriwaki H., Hoshikawa H., Aiba Y., Tanaka T., Miwa S., Katsura Y., Kita T. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997 Mar 6;386(6620):73–77. doi: 10.1038/386073a0. [DOI] [PubMed] [Google Scholar]
- Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- Steinbrecher U. P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem. 1987 Mar 15;262(8):3603–3608. [PubMed] [Google Scholar]
- Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbrecher U. P., Zhang H. F., Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med. 1990;9(2):155–168. doi: 10.1016/0891-5849(90)90119-4. [DOI] [PubMed] [Google Scholar]
- Valentin S., Nordfang O., Bregengård C., Wildgoose P. Evidence that the C-terminus of tissue factor pathway inhibitor (TFPI) is essential for its in vitro and in vivo interaction with lipoproteins. Blood Coagul Fibrinolysis. 1993 Oct;4(5):713–720. [PubMed] [Google Scholar]
- Weis J. R., Pitas R. E., Wilson B. D., Rodgers G. M. Oxidized low-density lipoprotein increases cultured human endothelial cell tissue factor activity and reduces protein C activation. FASEB J. 1991 Jul;5(10):2459–2465. doi: 10.1096/fasebj.5.10.2065893. [DOI] [PubMed] [Google Scholar]
- Wesselschmidt R., Likert K., Girard T., Wun T. C., Broze G. J., Jr Tissue factor pathway inhibitor: the carboxy-terminus is required for optimal inhibition of factor Xa. Blood. 1992 Apr 15;79(8):2004–2010. [PubMed] [Google Scholar]
- Wilcox J. N., Smith K. M., Schwartz S. M., Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2839–2843. doi: 10.1073/pnas.86.8.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wun T. C., Kretzmer K. K., Girard T. J., Miletich J. P., Broze G. J., Jr Cloning and characterization of a cDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of three tandem Kunitz-type inhibitory domains. J Biol Chem. 1988 May 5;263(13):6001–6004. [PubMed] [Google Scholar]
- Yoshimori T., Yamamoto A., Moriyama Y., Futai M., Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991 Sep 15;266(26):17707–17712. [PubMed] [Google Scholar]