Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 1;352(Pt 2):311–317.

Role of cytosolic phospholipase A2 in the production of lipid mediators and histamine release in mouse bone-marrow-derived mast cells.

N Nakatani 1, N Uozumi 1, K Kume 1, M Murakami 1, I Kudo 1, T Shimizu 1
PMCID: PMC1221461  PMID: 11085923

Abstract

Cytosolic phospholipase A(2) (cPLA(2)) plays a critical role in mast-cell-related allergic responses [Uozumi, Kume, Nagase, Nakatani, Ishii, Tashiro, Komagata, Maki, Ikuta, Ouchi et al. (1997) Nature (London) 390, 618-622]. Bone-marrow-derived mast cells from mice lacking cPLA(2) (cPLA(-/-)(2) mice) were used in order to better define the role of cPLA(2) in the maturation and degranulation of such cells. Cross-linking of high-affinity receptors for IgE (FcepsilonRI) on cells from cPLA(-/-)(2) mice led to the release of negligible amounts of arachidonic acid or its metabolites, the cysteinyl leukotrienes and prostaglandin D(2), indicating an essential role for cPLA(2) in the production of these allergic and pro-inflammatory lipid mediators. In addition, the histamine content of the mast cells and its release from the cells were reduced to 60%. While these results are in agreement with a reduced anaphylactic phenotype of cPLA(-/-)(2) mice, the ratios of release of histamine and beta-hexosaminidase were, paradoxically, significantly higher for cells from cPLA(-/-)(2) mice than for those from wild-type mice. Consistently, IgE-induced calcium influx in mast cells was greater and more prolonged in cells from cPLA(-/-)(2) mice than in those from wild-type mice. Thus the loss of cPLA(2) not only diminishes the release of lipid mediators, but also alters degranulation. While the overall effect is still a decrease in the release of mast cell mediators, explaining the in vivo findings, the present study proposes a novel link between cPLA(2) and the degranulation machinery.

Full Text

The Full Text of this article is available as a PDF (243.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham S. N., Malaviya R. Mast cells in infection and immunity. Infect Immun. 1997 Sep;65(9):3501–3508. doi: 10.1128/iai.65.9.3501-3508.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aoki Y., Nakamura M., Kodama H., Matsumoto T., Shimizu T., Noma M. A radioreceptor binding assay for platelet-activating factor (PAF) using membranes from CHO cells expressing human PAF receptor. J Immunol Methods. 1995 Oct 26;186(2):225–231. doi: 10.1016/0022-1759(95)00147-3. [DOI] [PubMed] [Google Scholar]
  3. Balboa M. A., Balsinde J., Jones S. S., Dennis E. A. Identity between the Ca2+-independent phospholipase A2 enzymes from P388D1 macrophages and Chinese hamster ovary cells. J Biol Chem. 1997 Mar 28;272(13):8576–8580. doi: 10.1074/jbc.272.13.8576. [DOI] [PubMed] [Google Scholar]
  4. Beaven M. A., Baumgartner R. A. Downstream signals initiated in mast cells by Fc epsilon RI and other receptors. Curr Opin Immunol. 1996 Dec;8(6):766–772. doi: 10.1016/s0952-7915(96)80002-1. [DOI] [PubMed] [Google Scholar]
  5. Bingham C. O., 3rd, Murakami M., Fujishima H., Hunt J. E., Austen K. F., Arm J. P. A heparin-sensitive phospholipase A2 and prostaglandin endoperoxide synthase-2 are functionally linked in the delayed phase of prostaglandin D2 generation in mouse bone marrow-derived mast cells. J Biol Chem. 1996 Oct 18;271(42):25936–25944. doi: 10.1074/jbc.271.42.25936. [DOI] [PubMed] [Google Scholar]
  6. Bonventre J. V., Huang Z., Taheri M. R., O'Leary E., Li E., Moskowitz M. A., Sapirstein A. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature. 1997 Dec 11;390(6660):622–625. doi: 10.1038/37635. [DOI] [PubMed] [Google Scholar]
  7. Church M. K., Levi-Schaffer F. The human mast cell. J Allergy Clin Immunol. 1997 Feb;99(2):155–160. doi: 10.1016/s0091-6749(97)70089-7. [DOI] [PubMed] [Google Scholar]
  8. Dennis E. A. The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem Sci. 1997 Jan;22(1):1–2. doi: 10.1016/s0968-0004(96)20031-3. [DOI] [PubMed] [Google Scholar]
  9. Fujishima H., Sanchez Mejia R. O., Bingham C. O., 3rd, Lam B. K., Sapirstein A., Bonventre J. V., Austen K. F., Arm J. P. Cytosolic phospholipase A2 is essential for both the immediate and the delayed phases of eicosanoid generation in mouse bone marrow-derived mast cells. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4803–4807. doi: 10.1073/pnas.96.9.4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guo Z., Turner C., Castle D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell. 1998 Aug 21;94(4):537–548. doi: 10.1016/s0092-8674(00)81594-9. [DOI] [PubMed] [Google Scholar]
  11. Hata D., Kawakami Y., Inagaki N., Lantz C. S., Kitamura T., Khan W. N., Maeda-Yamamoto M., Miura T., Han W., Hartman S. E. Involvement of Bruton's tyrosine kinase in FcepsilonRI-dependent mast cell degranulation and cytokine production. J Exp Med. 1998 Apr 20;187(8):1235–1247. doi: 10.1084/jem.187.8.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirasawa N., Santini F., Beaven M. A. Activation of the mitogen-activated protein kinase/cytosolic phospholipase A2 pathway in a rat mast cell line. Indications of different pathways for release of arachidonic acid and secretory granules. J Immunol. 1995 May 15;154(10):5391–5402. [PubMed] [Google Scholar]
  13. Huang R. Y., Blom T., Hellman L. Cloning and structural analysis of MMCP-1, MMCP-4 and MMCP-5, three mouse mast cell-specific serine proteases. Eur J Immunol. 1991 Jul;21(7):1611–1621. doi: 10.1002/eji.1830210706. [DOI] [PubMed] [Google Scholar]
  14. Huber M., Helgason C. D., Damen J. E., Liu L., Humphries R. K., Krystal G. The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11330–11335. doi: 10.1073/pnas.95.19.11330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huber M., Helgason C. D., Scheid M. P., Duronio V., Humphries R. K., Krystal G. Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J. 1998 Dec 15;17(24):7311–7319. doi: 10.1093/emboj/17.24.7311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hunt J. E., Friend D. S., Gurish M. F., Feyfant E., Sali A., Huang C., Ghildyal N., Stechschulte S., Austen K. F., Stevens R. L. Mouse mast cell protease 9, a novel member of the chromosome 14 family of serine proteases that is selectively expressed in uterine mast cells. J Biol Chem. 1997 Nov 14;272(46):29158–29166. doi: 10.1074/jbc.272.46.29158. [DOI] [PubMed] [Google Scholar]
  17. Kawakami Y., Hartman S. E., Holland P. M., Cooper J. A., Kawakami T. Multiple signaling pathways for the activation of JNK in mast cells: involvement of Bruton's tyrosine kinase, protein kinase C, and JNK kinases, SEK1 and MKK7. J Immunol. 1998 Aug 15;161(4):1795–1802. [PubMed] [Google Scholar]
  18. Kawakami Y., Yao L., Tashiro M., Gibson S., Mills G. B., Kawakami T. Activation and interaction with protein kinase C of a cytoplasmic tyrosine kinase, Itk/Tsk/Emt, on Fc epsilon RI cross-linking on mast cells. J Immunol. 1995 Oct 1;155(7):3556–3562. [PubMed] [Google Scholar]
  19. Kennedy B. P., Payette P., Mudgett J., Vadas P., Pruzanski W., Kwan M., Tang C., Rancourt D. E., Cromlish W. A. A natural disruption of the secretory group II phospholipase A2 gene in inbred mouse strains. J Biol Chem. 1995 Sep 22;270(38):22378–22385. doi: 10.1074/jbc.270.38.22378. [DOI] [PubMed] [Google Scholar]
  20. Kimura T., Kihara H., Bhattacharyya S., Sakamoto H., Appella E., Siraganian R. P. Downstream signaling molecules bind to different phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) peptides of the high affinity IgE receptor. J Biol Chem. 1996 Nov 1;271(44):27962–27968. doi: 10.1074/jbc.271.44.27962. [DOI] [PubMed] [Google Scholar]
  21. Kimura T., Sakamoto H., Appella E., Siraganian R. P. The negative signaling molecule SH2 domain-containing inositol-polyphosphate 5-phosphatase (SHIP) binds to the tyrosine-phosphorylated beta subunit of the high affinity IgE receptor. J Biol Chem. 1997 May 23;272(21):13991–13996. doi: 10.1074/jbc.272.21.13991. [DOI] [PubMed] [Google Scholar]
  22. Leslie C. C. Properties and regulation of cytosolic phospholipase A2. J Biol Chem. 1997 Jul 4;272(27):16709–16712. doi: 10.1074/jbc.272.27.16709. [DOI] [PubMed] [Google Scholar]
  23. Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., Davis R. J. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993 Jan 29;72(2):269–278. doi: 10.1016/0092-8674(93)90666-e. [DOI] [PubMed] [Google Scholar]
  24. Lin S., Cicala C., Scharenberg A. M., Kinet J. P. The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell. 1996 Jun 28;85(7):985–995. doi: 10.1016/s0092-8674(00)81300-8. [DOI] [PubMed] [Google Scholar]
  25. MacPhee M., Chepenik K. P., Liddell R. A., Nelson K. K., Siracusa L. D., Buchberg A. M. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell. 1995 Jun 16;81(6):957–966. doi: 10.1016/0092-8674(95)90015-2. [DOI] [PubMed] [Google Scholar]
  26. Matsuoka T., Hirata M., Tanaka H., Takahashi Y., Murata T., Kabashima K., Sugimoto Y., Kobayashi T., Ushikubi F., Aze Y. Prostaglandin D2 as a mediator of allergic asthma. Science. 2000 Mar 17;287(5460):2013–2017. doi: 10.1126/science.287.5460.2013. [DOI] [PubMed] [Google Scholar]
  27. McNeil H. P., Austen K. F., Somerville L. L., Gurish M. F., Stevens R. L. Molecular cloning of the mouse mast cell protease-5 gene. A novel secretory granule protease expressed early in the differentiation of serosal mast cells. J Biol Chem. 1991 Oct 25;266(30):20316–20322. [PubMed] [Google Scholar]
  28. McNeil H. P., Reynolds D. S., Schiller V., Ghildyal N., Gurley D. S., Austen K. F., Stevens R. L. Isolation, characterization, and transcription of the gene encoding mouse mast cell protease 7. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11174–11178. doi: 10.1073/pnas.89.23.11174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Murakami M., Austen K. F., Arm J. P. The immediate phase of c-kit ligand stimulation of mouse bone marrow-derived mast cells elicits rapid leukotriene C4 generation through posttranslational activation of cytosolic phospholipase A2 and 5-lipoxygenase. J Exp Med. 1995 Jul 1;182(1):197–206. doi: 10.1084/jem.182.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murakami M., Austen K. F., Bingham C. O., 3rd, Friend D. S., Penrose J. F., Arm J. P. Interleukin-3 regulates development of the 5-lipoxygenase/leukotriene C4 synthase pathway in mouse mast cells. J Biol Chem. 1995 Sep 29;270(39):22653–22656. doi: 10.1074/jbc.270.39.22653. [DOI] [PubMed] [Google Scholar]
  31. Nakajima K., Murakami M., Yanoshita R., Samejima Y., Karasawa K., Setaka M., Nojima S., Kudo I. Activated mast cells release extracellular type platelet-activating factor acetylhydrolase that contributes to autocrine inactivation of platelet-activating factor. J Biol Chem. 1997 Aug 8;272(32):19708–19713. doi: 10.1074/jbc.272.32.19708. [DOI] [PubMed] [Google Scholar]
  32. Nalefski E. A., Sultzman L. A., Martin D. M., Kriz R. W., Towler P. S., Knopf J. L., Clark J. D. Delineation of two functionally distinct domains of cytosolic phospholipase A2, a regulatory Ca(2+)-dependent lipid-binding domain and a Ca(2+)-independent catalytic domain. J Biol Chem. 1994 Jul 8;269(27):18239–18249. [PubMed] [Google Scholar]
  33. Razin E., Pecht I., Rivera J. Signal transduction in the activation of mast cells and basophils. Immunol Today. 1995 Aug;16(8):370–373. doi: 10.1016/0167-5699(95)80003-4. [DOI] [PubMed] [Google Scholar]
  34. Reddy S. T., Herschman H. R. Prostaglandin synthase-1 and prostaglandin synthase-2 are coupled to distinct phospholipases for the generation of prostaglandin D2 in activated mast cells. J Biol Chem. 1997 Feb 7;272(6):3231–3237. doi: 10.1074/jbc.272.6.3231. [DOI] [PubMed] [Google Scholar]
  35. Reddy S. T., Winstead M. V., Tischfield J. A., Herschman H. R. Analysis of the secretory phospholipase A2 that mediates prostaglandin production in mast cells. J Biol Chem. 1997 May 23;272(21):13591–13596. doi: 10.1074/jbc.272.21.13591. [DOI] [PubMed] [Google Scholar]
  36. Reynolds D. S., Stevens R. L., Lane W. S., Carr M. H., Austen K. F., Serafin W. E. Different mouse mast cell populations express various combinations of at least six distinct mast cell serine proteases. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3230–3234. doi: 10.1073/pnas.87.8.3230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Roa M., Paumet F., Le Mao J., David B., Blank U. Involvement of the ras-like GTPase rab3d in RBL-2H3 mast cell exocytosis following stimulation via high affinity IgE receptors (Fc epsilonRI). J Immunol. 1997 Sep 15;159(6):2815–2823. [PubMed] [Google Scholar]
  38. Schievella A. R., Regier M. K., Smith W. L., Lin L. L. Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem. 1995 Dec 22;270(51):30749–30754. doi: 10.1074/jbc.270.51.30749. [DOI] [PubMed] [Google Scholar]
  39. Serafin W. E., Sullivan T. P., Conder G. A., Ebrahimi A., Marcham P., Johnson S. S., Austen K. F., Reynolds D. S. Cloning of the cDNA and gene for mouse mast cell protease 4. Demonstration of its late transcription in mast cell subclasses and analysis of its homology to subclass-specific neutral proteases of the mouse and rat. J Biol Chem. 1991 Jan 25;266(3):1934–1941. [PubMed] [Google Scholar]
  40. Snyder F. Platelet-activating factor and its analogs: metabolic pathways and related intracellular processes. Biochim Biophys Acta. 1995 Feb 9;1254(3):231–249. doi: 10.1016/0005-2760(94)00192-2. [DOI] [PubMed] [Google Scholar]
  41. Song J. S., Gomez J., Stancato L. F., Rivera J. Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex. J Biol Chem. 1996 Oct 25;271(43):26962–26970. doi: 10.1074/jbc.271.43.26962. [DOI] [PubMed] [Google Scholar]
  42. Tanaka S., Nemoto K., Yamamura E., Ichikawa A. Intracellular localization of the 74- and 53-kDa forms of L-histidine decarboxylase in a rat basophilic/mast cell line, RBL-2H3. J Biol Chem. 1998 Apr 3;273(14):8177–8182. doi: 10.1074/jbc.273.14.8177. [DOI] [PubMed] [Google Scholar]
  43. Uozumi N., Kume K., Nagase T., Nakatani N., Ishii S., Tashiro F., Komagata Y., Maki K., Ikuta K., Ouchi Y. Role of cytosolic phospholipase A2 in allergic response and parturition. Nature. 1997 Dec 11;390(6660):618–622. doi: 10.1038/37622. [DOI] [PubMed] [Google Scholar]
  44. Yamaguchi M., Lantz C. S., Oettgen H. C., Katona I. M., Fleming T., Miyajima I., Kinet J. P., Galli S. J. IgE enhances mouse mast cell Fc(epsilon)RI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J Exp Med. 1997 Feb 17;185(4):663–672. doi: 10.1084/jem.185.4.663. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES