Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 1;352(Pt 2):319–325.

Identification and characterization of a novel Rho-specific guanine nucleotide exchange factor.

A Blomquist 1, G Schwörer 1, H Schablowski 1, A Psoma 1, M Lehnen 1, K H Jakobs 1, U Rümenapp 1
PMCID: PMC1221462  PMID: 11085924

Abstract

Rho GTPases are implicated in a multitude of cellular processes regulated by membrane receptors, such as cytoskeletal rearrangements, gene transcription and cell growth and motility. Activation of these GTPases is under the direct control of guanine nucleotide exchange factors (GEFs), the Dbl family proteins. By searching protein databases we have identified a novel Rho-GEF, termed p114-Rho-GEF, which similarly to other Rho-GEFs contains a Dbl homology domain followed by a pleckstrin homology domain. p114-Rho-GEF interacted specifically with RhoA, in its nucleotide-free and guanosine 5'-[gamma-thio]triphosphate-bound states, but not with Rac1 and Cdc42, and efficiently catalysed guanine nucleotide exchange of RhoA. Consistent with these results in vitro was our finding that the overexpression of p114-Rho-GEF in J82 and HEK-293 cells induced the formation of actin stress fibres and stimulated serum-response-factor-mediated gene transcription in a Rho-dependent manner. Rho-mediated transcriptional activation induced by M(3) muscarinic acetylcholine and lysophosphatidic acid receptors was enhanced by p114-Rho-GEF, suggesting that the activity of this novel Rho-GEF, which is widely expressed in human tissues, can be controlled by G-protein-coupled receptors.

Full Text

The Full Text of this article is available as a PDF (306.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. S., Bouquin N., Johnston L. H., Treisman R. Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J Biol Chem. 1998 Apr 10;273(15):8616–8622. doi: 10.1074/jbc.273.15.8616. [DOI] [PubMed] [Google Scholar]
  2. Blomberg N., Baraldi E., Nilges M., Saraste M. The PH superfold: a structural scaffold for multiple functions. Trends Biochem Sci. 1999 Nov;24(11):441–445. doi: 10.1016/s0968-0004(99)01472-3. [DOI] [PubMed] [Google Scholar]
  3. Cerione R. A., Zheng Y. The Dbl family of oncogenes. Curr Opin Cell Biol. 1996 Apr;8(2):216–222. doi: 10.1016/s0955-0674(96)80068-8. [DOI] [PubMed] [Google Scholar]
  4. Coso O. A., Chiariello M., Yu J. C., Teramoto H., Crespo P., Xu N., Miki T., Gutkind J. S. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell. 1995 Jun 30;81(7):1137–1146. doi: 10.1016/s0092-8674(05)80018-2. [DOI] [PubMed] [Google Scholar]
  5. Fromm C., Coso O. A., Montaner S., Xu N., Gutkind J. S. The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10098–10103. doi: 10.1073/pnas.94.19.10098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gebbink M. F., Kranenburg O., Poland M., van Horck F. P., Houssa B., Moolenaar W. H. Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology. J Cell Biol. 1997 Jun 30;137(7):1603–1613. doi: 10.1083/jcb.137.7.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glaven J. A., Whitehead I. P., Nomanbhoy T., Kay R., Cerione R. A. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J Biol Chem. 1996 Nov 1;271(44):27374–27381. doi: 10.1074/jbc.271.44.27374. [DOI] [PubMed] [Google Scholar]
  8. Hart M. J., Eva A., Zangrilli D., Aaronson S. A., Evans T., Cerione R. A., Zheng Y. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem. 1994 Jan 7;269(1):62–65. [PubMed] [Google Scholar]
  9. Hart M. J., Sharma S., elMasry N., Qiu R. G., McCabe P., Polakis P., Bollag G. Identification of a novel guanine nucleotide exchange factor for the Rho GTPase. J Biol Chem. 1996 Oct 11;271(41):25452–25458. doi: 10.1074/jbc.271.41.25452. [DOI] [PubMed] [Google Scholar]
  10. Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
  11. Horii Y., Beeler J. F., Sakaguchi K., Tachibana M., Miki T. A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J. 1994 Oct 17;13(20):4776–4786. doi: 10.1002/j.1460-2075.1994.tb06803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kjoller L., Hall A. Signaling to Rho GTPases. Exp Cell Res. 1999 Nov 25;253(1):166–179. doi: 10.1006/excr.1999.4674. [DOI] [PubMed] [Google Scholar]
  13. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  14. Lümmen G., Virchow S., Rümenapp U., Schmidt M., Wieland T., Otto T., Rübben H., Jakobs K. H. Identification of G protein-coupled receptors potently stimulating migration of human transitional-cell carcinoma cells. Naunyn Schmiedebergs Arch Pharmacol. 1997 Dec;356(6):769–776. doi: 10.1007/pl00005117. [DOI] [PubMed] [Google Scholar]
  15. Mackay D. J., Hall A. Rho GTPases. J Biol Chem. 1998 Aug 14;273(33):20685–20688. doi: 10.1074/jbc.273.33.20685. [DOI] [PubMed] [Google Scholar]
  16. Mao J., Yuan H., Xie W., Wu D. Guanine nucleotide exchange factor GEF115 specifically mediates activation of Rho and serum response factor by the G protein alpha subunit Galpha13. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12973–12976. doi: 10.1073/pnas.95.22.12973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Michiels F., Habets G. G., Stam J. C., van der Kammen R. A., Collard J. G. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature. 1995 May 25;375(6529):338–340. doi: 10.1038/375338a0. [DOI] [PubMed] [Google Scholar]
  18. Minden A., Lin A., Claret F. X., Abo A., Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 1995 Jun 30;81(7):1147–1157. doi: 10.1016/s0092-8674(05)80019-4. [DOI] [PubMed] [Google Scholar]
  19. O'Toole C., Price Z. H., Ohnuki Y., Unsgaard B. Ultrastructure, karyology and immunology of a cell line originated from a human transitional-cell carcinoma. Br J Cancer. 1978 Jul;38(1):64–76. doi: 10.1038/bjc.1978.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olson M. F., Ashworth A., Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995 Sep 1;269(5228):1270–1272. doi: 10.1126/science.7652575. [DOI] [PubMed] [Google Scholar]
  21. Peralta E. G., Ashkenazi A., Winslow J. W., Ramachandran J., Capon D. J. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature. 1988 Aug 4;334(6181):434–437. doi: 10.1038/334434a0. [DOI] [PubMed] [Google Scholar]
  22. Rümenapp U., Blomquist A., Schwörer G., Schablowski H., Psoma A., Jakobs K. H. Rho-specific binding and guanine nucleotide exchange catalysis by KIAA0380, a dbl family member. FEBS Lett. 1999 Oct 15;459(3):313–318. doi: 10.1016/s0014-5793(99)01270-3. [DOI] [PubMed] [Google Scholar]
  23. Schmidt M., Hüwe S. M., Fasselt B., Homann D., Rümenapp U., Sandmann J., Jakobs K. H. Mechanisms of phospholipase D stimulation by m3 muscarinic acetylcholine receptors. Evidence for involvement of tyrosine phosphorylation. Eur J Biochem. 1994 Oct 15;225(2):667–675. doi: 10.1111/j.1432-1033.1994.00667.x. [DOI] [PubMed] [Google Scholar]
  24. Seasholtz T. M., Majumdar M., Brown J. H. Rho as a mediator of G protein-coupled receptor signaling. Mol Pharmacol. 1999 Jun;55(6):949–956. doi: 10.1124/mol.55.6.949. [DOI] [PubMed] [Google Scholar]
  25. Self A. J., Hall A. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol. 1995;256:3–10. doi: 10.1016/0076-6879(95)56003-3. [DOI] [PubMed] [Google Scholar]
  26. Stam J. C., Collard J. G. The DH protein family, exchange factors for Rho-like GTPases. Prog Mol Subcell Biol. 1999;22:51–83. doi: 10.1007/978-3-642-58591-3_4. [DOI] [PubMed] [Google Scholar]
  27. Whitehead I. P., Campbell S., Rossman K. L., Der C. J. Dbl family proteins. Biochim Biophys Acta. 1997 Feb 22;1332(1):F1–23. doi: 10.1016/s0304-419x(96)00040-6. [DOI] [PubMed] [Google Scholar]
  28. Zheng Y., Fischer D. J., Santos M. F., Tigyi G., Pasteris N. G., Gorski J. L., Xu Y. The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J Biol Chem. 1996 Dec 27;271(52):33169–33172. doi: 10.1074/jbc.271.52.33169. [DOI] [PubMed] [Google Scholar]
  29. Zheng Y., Hart M. J., Cerione R. A. Guanine nucleotide exchange catalyzed by dbl oncogene product. Methods Enzymol. 1995;256:77–84. doi: 10.1016/0076-6879(95)56011-4. [DOI] [PubMed] [Google Scholar]
  30. Zheng Y., Olson M. F., Hall A., Cerione R. A., Toksoz D. Direct involvement of the small GTP-binding protein Rho in lbc oncogene function. J Biol Chem. 1995 Apr 21;270(16):9031–9034. doi: 10.1074/jbc.270.16.9031. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES