Abstract
Alloxan is used to induce diabetes in animals; however, the underlying mechanisms are still a matter of debate. Alloxan evoked a rapid hyperpolarization of the plasma membrane potential and suppressed electrical activity elicited by 15 mM glucose, thus terminating voltage-dependent Ca(2+) influx. Accordingly, glucose-induced oscillations in intracellular free Ca(2+) concentration were abolished. The effect of alloxan on membrane potential could not be reversed by glucose but was reversed by tolbutamide. However, the sensitivity to tolbutamide was decreased after treatment of the cells with alloxan. These effects closely resemble those described earlier for H(2)O(2). H(2)O(2) and alloxan decreased the mitochondrial membrane potential, indicating a decrease in ATP production and thus interference with cell metabolism. A decrease in ATP synthesis would explain the plasma membrane hyperpolarization observed in intact islets, reflecting the activation of ATP-dependent K(+) channels. Surprisingly, alloxan inhibited the whole-cell K(+)(ATP) current measured in single cells and the single-channel K(+)(ATP) current registered in excised patches. This inhibitory effect of alloxan is not mediated by changes in cell metabolism but seems to be due to direct interactions with the K(+)(ATP) channels via thiol-group oxidation. We have monitored the appearance of reactive oxygen species in single cells and islets treated with alloxan and H(2)O(2) for comparison. In contrast to H(2)O(2), alloxan induced the appearance of measurable reactive oxygen species only in islets but not in single cells. The results show that alloxan evokes different effects in islets and single cells, giving a possible explanation for inconsistent results reported in the past. It is concluded that alloxan exerts its diabetogenic effect by the production of H(2)O(2) in intact islets.
Full Text
The Full Text of this article is available as a PDF (190.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asayama K., English D., Slonim A. E., Burr I. M. Chemiluminescence as an index of drug-induced free radical production in pancreatic islets. Diabetes. 1984 Feb;33(2):160–163. doi: 10.2337/diab.33.2.160. [DOI] [PubMed] [Google Scholar]
- BHATTACHARYA G. On the protection against alloxan diabetes by hexoses. Science. 1954 Nov 19;120(3125):841–843. doi: 10.1126/science.120.3125.841. [DOI] [PubMed] [Google Scholar]
- Carroll P. B., Moura A. S., Rojas E., Atwater I. The diabetogenic agent alloxan increases K+ permeability by a mechanism involving activation of ATP-sensitive K(+)-channels in mouse pancreatic beta-cells. Mol Cell Biochem. 1994 Nov 23;140(2):127–136. doi: 10.1007/BF00926751. [DOI] [PubMed] [Google Scholar]
- Drews G., Krämer C., Krippeit-Drews P. Dual effect of NO on K(+)(ATP) current of mouse pancreatic B-cells: stimulation by deenergizing mitochondria and inhibition by direct interaction with the channel. Biochim Biophys Acta. 2000 Mar 15;1464(1):62–68. doi: 10.1016/s0005-2736(99)00242-4. [DOI] [PubMed] [Google Scholar]
- Duchen M. R., Smith P. A., Ashcroft F. M. Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem J. 1993 Aug 15;294(Pt 1):35–42. doi: 10.1042/bj2940035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrino M. G., Plant T. D., Henquin J. C. Effects of putative activators of K+ channels in mouse pancreatic beta-cells. Br J Pharmacol. 1989 Nov;98(3):957–965. doi: 10.1111/j.1476-5381.1989.tb14626.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorus F. K., Malaisse W. J., Pipeleers D. G. Selective uptake of alloxan by pancreatic B-cells. Biochem J. 1982 Nov 15;208(2):513–515. doi: 10.1042/bj2080513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grankvist K., Marklund S. L., Täljedal I. B. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J. 1981 Nov 1;199(2):393–398. doi: 10.1042/bj1990393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grapengiesser E., Gylfe E., Hellman B. Dual effect of glucose on cytoplasmic Ca2+ in single pancreatic beta-cells. Biochem Biophys Res Commun. 1988 Jan 15;150(1):419–425. doi: 10.1016/0006-291x(88)90537-2. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Henquin J. C., Malvaux P., Lambert A. E. Alloxan-induced alteration of insulin release, rubidium efflux and glucose metabolism in rat islets stimulated by various secretagogues. Diabetologia. 1979 Apr;16(4):253–260. doi: 10.1007/BF01221952. [DOI] [PubMed] [Google Scholar]
- Herson P. S., Ashford M. L. Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol. 1997 May 15;501(Pt 1):59–66. doi: 10.1111/j.1469-7793.1997.059bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichas F., Mazat J. P. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):33–50. doi: 10.1016/s0005-2728(98)00119-4. [DOI] [PubMed] [Google Scholar]
- Janjic D., Maechler P., Sekine N., Bartley C., Annen A. S., Wolheim C. B. Free radical modulation of insulin release in INS-1 cells exposed to alloxan. Biochem Pharmacol. 1999 Mar 15;57(6):639–648. doi: 10.1016/s0006-2952(98)00346-3. [DOI] [PubMed] [Google Scholar]
- Kozlowski R. Z., Ashford M. L. ATP-sensitive K(+)-channel run-down is Mg2+ dependent. Proc R Soc Lond B Biol Sci. 1990 Jun 22;240(1298):397–410. doi: 10.1098/rspb.1990.0044. [DOI] [PubMed] [Google Scholar]
- Krippeit-Drews P., Britsch S., Lang F., Drews G. Effects of SH-group reagents on Ca2+ and K+ channel currents of pancreatic B-cells. Biochem Biophys Res Commun. 1994 Apr 29;200(2):860–866. doi: 10.1006/bbrc.1994.1530. [DOI] [PubMed] [Google Scholar]
- Krippeit-Drews P., Britsch S., Lang F., Drews G. Effects of oxidants on membrane potential, K+ and Ca2+ currents of mouse pancreatic B-cells. Adv Exp Med Biol. 1997;426:355–359. doi: 10.1007/978-1-4899-1819-2_47. [DOI] [PubMed] [Google Scholar]
- Krippeit-Drews P., Düfer M., Drews G. Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem Biophys Res Commun. 2000 Jan 7;267(1):179–183. doi: 10.1006/bbrc.1999.1921. [DOI] [PubMed] [Google Scholar]
- Krippeit-Drews P., Kramer C., Welker S., Lang F., Ammon H. P., Drews G. Interference of H2O2 with stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol. 1999 Jan 15;514(Pt 2):471–481. doi: 10.1111/j.1469-7793.1999.471ae.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krippeit-Drews P., Kröncke K. D., Welker S., Zempel G., Roenfeldt M., Ammon H. P., Lang F., Drews G. The effects of nitric oxide on the membrane potential and ionic currents of mouse pancreatic B cells. Endocrinology. 1995 Dec;136(12):5363–5369. doi: 10.1210/endo.136.12.7588283. [DOI] [PubMed] [Google Scholar]
- Krippeit-Drews P., Lang F., Häussinger D., Drews G. H2O2 induced hyperpolarization of pancreatic B-cells. Pflugers Arch. 1994 Apr;426(6):552–554. doi: 10.1007/BF00378534. [DOI] [PubMed] [Google Scholar]
- Kubisch H. M., Wang J., Bray T. M., Phillips J. P. Targeted overexpression of Cu/Zn superoxide dismutase protects pancreatic beta-cells against oxidative stress. Diabetes. 1997 Oct;46(10):1563–1566. doi: 10.2337/diabetes.46.10.1563. [DOI] [PubMed] [Google Scholar]
- Lenzen S., Drinkgern J., Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 1996;20(3):463–466. doi: 10.1016/0891-5849(96)02051-5. [DOI] [PubMed] [Google Scholar]
- Lenzen S., Freytag S., Panten U. Inhibition of glucokinase by alloxan through interaction with SH groups in the sugar-binding site of the enzyme. Mol Pharmacol. 1988 Sep;34(3):395–400. [PubMed] [Google Scholar]
- Lenzen S., Panten U. Alloxan: history and mechanism of action. Diabetologia. 1988 Jun;31(6):337–342. doi: 10.1007/BF02341500. [DOI] [PubMed] [Google Scholar]
- Meglasson M. D., Burch P. T., Berner D. K., Najafi H., Matschinsky F. M. Identification of glucokinase as an alloxan-sensitive glucose sensor of the pancreatic beta-cell. Diabetes. 1986 Oct;35(10):1163–1173. doi: 10.2337/diab.35.10.1163. [DOI] [PubMed] [Google Scholar]
- Meissner H. P., Schmelz H. Membrane potential of beta-cells in pancreatic islets. Pflugers Arch. 1974;351(3):195–206. doi: 10.1007/BF00586918. [DOI] [PubMed] [Google Scholar]
- Nicotera P., Leist M., Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett. 1998 Dec 28;102-103:139–142. doi: 10.1016/s0378-4274(98)00298-7. [DOI] [PubMed] [Google Scholar]
- Park B. H., Rho H. W., Park J. W., Cho C. G., Kim J. S., Chung H. T., Kim H. R. Protective mechanism of glucose against alloxan-induced pancreatic beta-cell damage. Biochem Biophys Res Commun. 1995 May 5;210(1):1–6. doi: 10.1006/bbrc.1995.1619. [DOI] [PubMed] [Google Scholar]
- Plant T. D. Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol. 1988 Oct;404:731–747. doi: 10.1113/jphysiol.1988.sp017316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rerup C. C. Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev. 1970 Dec;22(4):485–518. [PubMed] [Google Scholar]
- Richter C., Schweizer M., Cossarizza A., Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett. 1996 Jan 8;378(2):107–110. doi: 10.1016/0014-5793(95)01431-4. [DOI] [PubMed] [Google Scholar]
- Scheynius A., Täljedal I. B. On the mechanism of glucose protection against alloxan toxicity. Diabetologia. 1971 Aug;7(4):252–255. doi: 10.1007/BF01211877. [DOI] [PubMed] [Google Scholar]
- Smith P. A., Williams B. A., Ashcroft F. M. Block of ATP-sensitive K+ channels in isolated mouse pancreatic beta-cells by 2,3-butanedione monoxime. Br J Pharmacol. 1994 May;112(1):143–149. doi: 10.1111/j.1476-5381.1994.tb13044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takasu N., Komiya I., Asawa T., Nagasawa Y., Yamada T. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes. 1991 Sep;40(9):1141–1145. doi: 10.2337/diab.40.9.1141. [DOI] [PubMed] [Google Scholar]
- Tiedge M., Krug U., Lenzen S. Modulation of human glucokinase intrinsic activity by SH reagents mirrors post-translational regulation of enzyme activity. Biochim Biophys Acta. 1997 Feb 8;1337(2):175–190. doi: 10.1016/s0167-4838(96)00162-8. [DOI] [PubMed] [Google Scholar]
- Tiedge M., Lortz S., Munday R., Lenzen S. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes. 1998 Oct;47(10):1578–1585. doi: 10.2337/diabetes.47.10.1578. [DOI] [PubMed] [Google Scholar]
- Tomita T., Lacy P. E., Natschinsky F. M., McDaniel M. L. Effect of alloxan on insulin secretion in isolated rat islets perifused in vitro. Diabetes. 1974 Jun;23(6):517–524. doi: 10.2337/diab.23.6.517. [DOI] [PubMed] [Google Scholar]
- Wartenberg M., Hescheler J., Sauer H. Electrical fields enhance growth of cancer spheroids by reactive oxygen species and intracellular Ca2+. Am J Physiol. 1997 May;272(5 Pt 2):R1677–R1683. doi: 10.1152/ajpregu.1997.272.5.R1677. [DOI] [PubMed] [Google Scholar]
- Yamamoto H., Uchigata Y., Okamoto H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature. 1981 Nov 19;294(5838):284–286. doi: 10.1038/294284a0. [DOI] [PubMed] [Google Scholar]