Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 1;352(Pt 2):399–407.

A single amino acid substitution (N297A) in the conserved NPXXY sequence of the human N-formyl peptide receptor results in inhibition of desensitization and endocytosis, and a dose-dependent shift in p42/44 mitogen-activated protein kinase activation and chemotaxis.

J M Gripentrog 1, A J Jesaitis 1, H M Miettinen 1
PMCID: PMC1221471  PMID: 11085933

Abstract

The formyl peptide receptor (FPR) is a G-protein-coupled receptor (GPCR) that mediates chemotaxis and stimulates the mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase pathway. We have examined the functional effects of substitutions of a conserved aspartic acid residue in the second transmembrane domain (D71A) and of residues in the conserved NPXXY motif in the seventh transmembrane domain (N297A and Y301A). These mutated receptors, expressed in Chinese hamster ovary (CHO) cells, bind ligand with affinities similar to wild-type FPR, but the D71A mutant is uncoupled from G-protein [Miettinen, Mills, Gripentrog, Dratz, Granger and Jesaitis (1997) J. Immunol 159, 4045-4054]. In the present study, we show that both the D71A and N297A mutations resulted in defective endocytosis. The N297A substitution also prevented desensitization, as determined by intracellular calcium mobilization by sequential stimulation with ligand. In chemotaxis assays, the N297A mutation resulted in cell migration towards gradients of up to 100 nM N-formyl-methionyl-leucyl-phenylalanine (fMLF), whereas cells expressing the wild-type FPR and the Y301A mutant were no longer chemotactically responsive at 10-100 nM fMLF. Maximal activation of p42/44 MAPK occurred in CHO cells expressing wild-type FPR at 10 nM-100 nM fMLF, whereas cells expressing the N297A mutant showed a dose-dependent increase in the amount of phosphorylated p42/44 MAPK up to 1-10 microM fMLF. Since the MAPK kinase inhibitor PD98059 blocked fMLF-induced chemotaxis, our results suggest that the dose-dependent increase in p42/44 MAPK activation may correlate with the increased chemotactic migration of N297A transfectants at 10 nM-100 nM fMLF.

Full Text

The Full Text of this article is available as a PDF (326.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Monteclaro F. S., Tsou C. L., Franci C., Charo I. F. Dissociation of chemotaxis from agonist-induced receptor internalization in a lymphocyte cell line transfected with CCR2B. Evidence that directed migration does not require rapid modulation of signaling at the receptor level. J Biol Chem. 1997 Oct 3;272(40):25037–25042. doi: 10.1074/jbc.272.40.25037. [DOI] [PubMed] [Google Scholar]
  2. Barak L. S., Ménard L., Ferguson S. S., Colapietro A. M., Caron M. G. The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. Biochemistry. 1995 Nov 28;34(47):15407–15414. doi: 10.1021/bi00047a003. [DOI] [PubMed] [Google Scholar]
  3. Barak L. S., Tiberi M., Freedman N. J., Kwatra M. M., Lefkowitz R. J., Caron M. G. A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J Biol Chem. 1994 Jan 28;269(4):2790–2795. [PubMed] [Google Scholar]
  4. Budd D. C., Rae A., Tobin A. B. Activation of the mitogen-activated protein kinase pathway by a Gq/11-coupled muscarinic receptor is independent of receptor internalization. J Biol Chem. 1999 Apr 30;274(18):12355–12360. doi: 10.1074/jbc.274.18.12355. [DOI] [PubMed] [Google Scholar]
  5. Daaka Y., Luttrell L. M., Ahn S., Della Rocca G. J., Ferguson S. S., Caron M. G., Lefkowitz R. J. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem. 1998 Jan 9;273(2):685–688. doi: 10.1074/jbc.273.2.685. [DOI] [PubMed] [Google Scholar]
  6. DeGraff J. L., Gagnon A. W., Benovic J. L., Orsini M. J. Role of arrestins in endocytosis and signaling of alpha2-adrenergic receptor subtypes. J Biol Chem. 1999 Apr 16;274(16):11253–11259. doi: 10.1074/jbc.274.16.11253. [DOI] [PubMed] [Google Scholar]
  7. Downey G. P., Butler J. R., Tapper H., Fialkow L., Saltiel A. R., Rubin B. B., Grinstein S. Importance of MEK in neutrophil microbicidal responsiveness. J Immunol. 1998 Jan 1;160(1):434–443. [PubMed] [Google Scholar]
  8. Ferguson S. S., Ménard L., Barak L. S., Koch W. J., Colapietro A. M., Caron M. G. Role of phosphorylation in agonist-promoted beta 2-adrenergic receptor sequestration. Rescue of a sequestration-defective mutant receptor by beta ARK1. J Biol Chem. 1995 Oct 20;270(42):24782–24789. doi: 10.1074/jbc.270.42.24782. [DOI] [PubMed] [Google Scholar]
  9. Gorman C. M., Howard B. H., Reeves R. Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 1983 Nov 11;11(21):7631–7648. doi: 10.1093/nar/11.21.7631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heuertz R. M., Tricomi S. M., Ezekiel U. R., Webster R. O. C-reactive protein inhibits chemotactic peptide-induced p38 mitogen-activated protein kinase activity and human neutrophil movement. J Biol Chem. 1999 Jun 18;274(25):17968–17974. doi: 10.1074/jbc.274.25.17968. [DOI] [PubMed] [Google Scholar]
  11. Hii C. S., Stacey K., Moghaddami N., Murray A. W., Ferrante A. Role of the extracellular signal-regulated protein kinase cascade in human neutrophil killing of Staphylococcus aureus and Candida albicans and in migration. Infect Immun. 1999 Mar;67(3):1297–1302. doi: 10.1128/iai.67.3.1297-1302.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hsu M. H., Chiang S. C., Ye R. D., Prossnitz E. R. Phosphorylation of the N-formyl peptide receptor is required for receptor internalization but not chemotaxis. J Biol Chem. 1997 Nov 21;272(47):29426–29429. doi: 10.1074/jbc.272.47.29426. [DOI] [PubMed] [Google Scholar]
  13. Hunyady L., Bor M., Baukal A. J., Balla T., Catt K. J. A conserved NPLFY sequence contributes to agonist binding and signal transduction but is not an internalization signal for the type 1 angiotensin II receptor. J Biol Chem. 1995 Jul 14;270(28):16602–16609. doi: 10.1074/jbc.270.28.16602. [DOI] [PubMed] [Google Scholar]
  14. Jesaitis A. J., Erickson R. W., Klotz K. N., Bommakanti R. K., Siemsen D. W. Functional molecular complexes of human N-formyl chemoattractant receptors and actin. J Immunol. 1993 Nov 15;151(10):5653–5665. [PubMed] [Google Scholar]
  15. Kampen G. T., Stafford S., Adachi T., Jinquan T., Quan S., Grant J. A., Skov P. S., Poulsen L. K., Alam R. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood. 2000 Mar 15;95(6):1911–1917. [PubMed] [Google Scholar]
  16. Klemke R. L., Cai S., Giannini A. L., Gallagher P. J., de Lanerolle P., Cheresh D. A. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol. 1997 Apr 21;137(2):481–492. doi: 10.1083/jcb.137.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klotz K. N., Krotec K. L., Gripentrog J., Jesaitis A. J. Regulatory interaction of N-formyl peptide chemoattractant receptors with the membrane skeleton in human neutrophils. J Immunol. 1994 Jan 15;152(2):801–810. [PubMed] [Google Scholar]
  18. Konvicka K., Guarnieri F., Ballesteros J. A., Weinstein H. A proposed structure for transmembrane segment 7 of G protein-coupled receptors incorporating an asn-Pro/Asp-Pro motif. Biophys J. 1998 Aug;75(2):601–611. doi: 10.1016/S0006-3495(98)77551-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuroki M., O'Flaherty J. T. Differential effects of a mitogen-activated protein kinase kinase inhibitor on human neutrophil responses to chemotactic factors. Biochem Biophys Res Commun. 1997 Mar 17;232(2):474–477. doi: 10.1006/bbrc.1997.6296. [DOI] [PubMed] [Google Scholar]
  20. Laporte S. A., Servant G., Richard D. E., Escher E., Guillemette G., Leduc R. The tyrosine within the NPXnY motif of the human angiotensin II type 1 receptor is involved in mediating signal transduction but is not essential for internalization. Mol Pharmacol. 1996 Jan;49(1):89–95. [PubMed] [Google Scholar]
  21. Le Gouill C., Parent J. L., Rola-Pleszczynski M., Stanková J. Structural and functional requirements for agonist-induced internalization of the human platelet-activating factor receptor. J Biol Chem. 1997 Aug 22;272(34):21289–21295. doi: 10.1074/jbc.272.34.21289. [DOI] [PubMed] [Google Scholar]
  22. Lemmon M. A., Ferguson K. M., Schlessinger J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell. 1996 May 31;85(5):621–624. doi: 10.1016/s0092-8674(00)81022-3. [DOI] [PubMed] [Google Scholar]
  23. Li J. G., Luo L. Y., Krupnick J. G., Benovic J. L., Liu-Chen L. Y. U50,488H-induced internalization of the human kappa opioid receptor involves a beta-arrestin- and dynamin-dependent mechanism. Kappa receptor internalization is not required for mitogen-activated protein kinase activation. J Biol Chem. 1999 Apr 23;274(17):12087–12094. doi: 10.1074/jbc.274.17.12087. [DOI] [PubMed] [Google Scholar]
  24. Miettinen H. M., Gripentrog J. M., Jesaitis A. J. Chemotaxis of chinese hamster ovary cells expressing the human neutrophil formyl peptide receptor: role of signal transduction molecules and alpha5beta1 integrin. J Cell Sci. 1998 Jul 30;111(Pt 14):1921–1928. doi: 10.1242/jcs.111.14.1921. [DOI] [PubMed] [Google Scholar]
  25. Miettinen H. M., Gripentrog J. M., Mason M. M., Jesaitis A. J. Identification of putative sites of interaction between the human formyl peptide receptor and G protein. J Biol Chem. 1999 Sep 24;274(39):27934–27942. doi: 10.1074/jbc.274.39.27934. [DOI] [PubMed] [Google Scholar]
  26. Miettinen H. M., Mills J. S., Gripentrog J. M., Dratz E. A., Granger B. L., Jesaitis A. J. The ligand binding site of the formyl peptide receptor maps in the transmembrane region. J Immunol. 1997 Oct 15;159(8):4045–4054. [PubMed] [Google Scholar]
  27. Mitchell R., McCulloch D., Lutz E., Johnson M., MacKenzie C., Fennell M., Fink G., Zhou W., Sealfon S. C. Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature. 1998 Mar 26;392(6674):411–414. doi: 10.1038/32937. [DOI] [PubMed] [Google Scholar]
  28. Parent C. A., Blacklock B. J., Froehlich W. M., Murphy D. B., Devreotes P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell. 1998 Oct 2;95(1):81–91. doi: 10.1016/s0092-8674(00)81784-5. [DOI] [PubMed] [Google Scholar]
  29. Parent C. A., Devreotes P. N. A cell's sense of direction. Science. 1999 Apr 30;284(5415):765–770. doi: 10.1126/science.284.5415.765. [DOI] [PubMed] [Google Scholar]
  30. Pitcher J. A., Freedman N. J., Lefkowitz R. J. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–692. doi: 10.1146/annurev.biochem.67.1.653. [DOI] [PubMed] [Google Scholar]
  31. Prossnitz E. R. Desensitization of N-formylpeptide receptor-mediated activation is dependent upon receptor phosphorylation. J Biol Chem. 1997 Jun 13;272(24):15213–15219. doi: 10.1074/jbc.272.24.15213. [DOI] [PubMed] [Google Scholar]
  32. Prossnitz E. R., Gilbert T. L., Chiang S., Campbell J. J., Qin S., Newman W., Sklar L. A., Ye R. D. Multiple activation steps of the N-formyl peptide receptor. Biochemistry. 1999 Feb 23;38(8):2240–2247. doi: 10.1021/bi982274t. [DOI] [PubMed] [Google Scholar]
  33. Prossnitz E. R., Schreiber R. E., Bokoch G. M., Ye R. D. Binding of low affinity N-formyl peptide receptors to G protein. Characterization of a novel inactive receptor intermediate. J Biol Chem. 1995 May 5;270(18):10686–10694. doi: 10.1074/jbc.270.18.10686. [DOI] [PubMed] [Google Scholar]
  34. Schiffmann E., Showell H. V., Corcoran B. A., Ward P. A., Smith E., Becker E. L. The isolation and partial characterization of neutrophil chemotactic factors from Escherichia coli. J Immunol. 1975 Jun;114(6):1831–1837. [PubMed] [Google Scholar]
  35. Servant G., Weiner O. D., Neptune E. R., Sedat J. W., Bourne H. R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol Biol Cell. 1999 Apr;10(4):1163–1178. doi: 10.1091/mbc.10.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Slice L. W., Wong H. C., Sternini C., Grady E. F., Bunnett N. W., Walsh J. H. The conserved NPXnY motif present in the gastrin-releasing peptide receptor is not a general sequestration sequence. J Biol Chem. 1994 Aug 26;269(34):21755–21761. [PubMed] [Google Scholar]
  37. Thomas W. G., Baker K. M., Motel T. J., Thekkumkara T. J. Angiotensin II receptor endocytosis involves two distinct regions of the cytoplasmic tail. A role for residues on the hydrophobic face of a putative amphipathic helix. J Biol Chem. 1995 Sep 22;270(38):22153–22159. doi: 10.1074/jbc.270.38.22153. [DOI] [PubMed] [Google Scholar]
  38. Ye R. D., Boulay F. Structure and function of leukocyte chemoattractant receptors. Adv Pharmacol. 1997;39:221–289. doi: 10.1016/s1054-3589(08)60073-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES