Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 1;352(Pt 2):449–463.

O-glycan variability of egg-jelly mucins from Xenopus laevis: characterization of four phenotypes that differ by the terminal glycosylation of their mucins.

Y Guerardel 1, O Kol 1, E Maes 1, T Lefebvre 1, B Boilly 1, M Davril 1, G Strecker 1
PMCID: PMC1221477  PMID: 11085939

Abstract

Eggs from Xenopus laevis are surrounded by several layers of jelly that are needed for proper fertilization. Jelly coat is composed of high-molecular-mass glycoconjugates to which are bound many globular proteins. O-glycans released from the jelly coat of X. laevis have been partially described in previous studies. In this study, we compared the glycosylation pattern of the egg jelly coat isolated from six specimens of X. laevis. The O-glycans were released from jelly coats by alkali/borohydride treatment. Structural characterization was performed through a combination of one- and two-dimensional (1)H-NMR and methylation analysis. This allowed the description of a new family of sulphated O-glycans present in jelly coats of all X. laevis. However, the jelly O-glycans showed a low extent of polymorphism between specimens. This intra-specific variability was restricted to the terminal substitution of O-linked oligosaccharides. The differential expression of two glycosyltransferase [an alpha-(1-->4) galactosyltransferase and an alpha-(1-->3) fucosyltransferase] activities resulted in the characterization of four phenotypes of X. laevis. Furthermore, electrophoretic analysis suggested that the high-molecular-mass fraction of jelly coat was mostly composed of mucin-type glycoproteins. Blot analysis with lectins confirmed that the glycan variability was borne by these mucin-type components. However, fertilization assays suggested that the glycan polymorphism had no repercussion on egg fertilizability.

Full Text

The Full Text of this article is available as a PDF (307.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonnell B. S., Reinhart D., Chandler D. E. Xenopus laevis egg jelly coats consist of small diffusible proteins bound to a complex system of structurally stable networks composed of high-molecular-weight glycoconjugates. Dev Biol. 1996 Feb 25;174(1):32–42. doi: 10.1006/dbio.1996.0049. [DOI] [PubMed] [Google Scholar]
  2. Capon C., Leroy Y., Wieruszeski J. M., Ricart G., Strecker G., Montreuil J., Fournet B. Structures of O-glycosidically linked oligosaccharides isolated from human meconium glycoproteins. Eur J Biochem. 1989 Jun 1;182(1):139–152. doi: 10.1111/j.1432-1033.1989.tb14810.x. [DOI] [PubMed] [Google Scholar]
  3. Coppin A., Maes E., Morelle W., Strecker G. Structural analysis of 13 neutral oligosaccharide-alditols released by reductive beta-elimination from oviducal mucins of Rana temporaria. Eur J Biochem. 1999 Nov;266(1):94–104. doi: 10.1046/j.1432-1327.1999.00823.x. [DOI] [PubMed] [Google Scholar]
  4. Dua V. K., Rao B. N., Wu S. S., Dube V. E., Bush C. A. Characterization of the oligosaccharide alditols from ovarian cyst mucin glycoproteins of blood group A using high pressure liquid chromatography (HPLC) and high field 1H NMR spectroscopy. J Biol Chem. 1986 Feb 5;261(4):1599–1608. [PubMed] [Google Scholar]
  5. Fournet B., Strecker G., Leroy Y., Montreuil J. Gas--liquid chromatography and mass spectrometry of methylated and acetylated methyl glycosides. Application to the structural analysis of glycoprotein glycans. Anal Biochem. 1981 Sep 15;116(2):489–502. doi: 10.1016/0003-2697(81)90393-6. [DOI] [PubMed] [Google Scholar]
  6. Gerton G. L., Hedrick J. L. The vitelline envelope to fertilization envelope conversion in eggs of Xenopus laevis. Dev Biol. 1986 Jul;116(1):1–7. doi: 10.1016/0012-1606(86)90036-9. [DOI] [PubMed] [Google Scholar]
  7. Hauser F., Hoffmann W. P-domains as shuffled cysteine-rich modules in integumentary mucin C.1 (FIM-C.1) from Xenopus laevis. Polydispersity and genetic polymorphism. J Biol Chem. 1992 Dec 5;267(34):24620–24624. [PubMed] [Google Scholar]
  8. Hoffmann W. A new repetitive protein from Xenopus laevis skin highly homologous to pancreatic spasmolytic polypeptide. J Biol Chem. 1988 Jun 5;263(16):7686–7690. [PubMed] [Google Scholar]
  9. Houdret N., Perini J. M., Galabert C., Scharfman A., Humbert P., Lamblin G., Roussel P. The high lipid content of respiratory mucins in cystic fibrosis is related to infection. Biochim Biophys Acta. 1986 Jan 15;880(1):54–61. doi: 10.1016/0304-4165(86)90119-4. [DOI] [PubMed] [Google Scholar]
  10. Joba W., Hoffmann W. Similarities of integumentary mucin B.1 from Xenopus laevis and prepro-von Willebrand factor at their amino-terminal regions. J Biol Chem. 1997 Jan 17;272(3):1805–1810. doi: 10.1074/jbc.272.3.1805. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lancaster C. A., Peat N., Duhig T., Wilson D., Taylor-Papadimitriou J., Gendler S. J. Structure and expression of the human polymorphic epithelial mucin gene: an expressed VNTR unit. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1019–1029. doi: 10.1016/s0006-291x(05)80888-5. [DOI] [PubMed] [Google Scholar]
  13. Larabell C. A., Chandler D. E. The coelomic envelope of Xenopus laevis eggs: a quick-freeze, deep-etch analysis. Dev Biol. 1989 Jan;131(1):126–135. doi: 10.1016/s0012-1606(89)80044-2. [DOI] [PubMed] [Google Scholar]
  14. Maes E., Wieruszeski J. M., Plancke Y., Strecker G. Structure of three Kdn-containing oligosaccharide-alditols released from oviducal secretions of Ambystoma tigrinum: characterization of the carbohydrate sequence Fuc (alpha 1-5) [Fuc (alpha 1-4)] Kdn (alpha 2-3/6). FEBS Lett. 1995 Jan 23;358(2):205–210. doi: 10.1016/0014-5793(94)01425-z. [DOI] [PubMed] [Google Scholar]
  15. Morelle W., Guyétant R., Strecker G. Structural analysis of oligosaccharide-alditols released by reductive beta-elimination from oviducal mucins of Rana dalmatina. Carbohydr Res. 1998 Jan;306(3):435–443. doi: 10.1016/s0008-6215(97)10074-x. [DOI] [PubMed] [Google Scholar]
  16. Morelle W., Lemoine J., Strecker G. Structural analysis of O-linked oligosaccharide-alditols by electrospray-tandem mass spectrometry after mild periodate oxidation and derivatization with 2-aminopyridine. Anal Biochem. 1998 May 15;259(1):16–27. doi: 10.1006/abio.1998.2618. [DOI] [PubMed] [Google Scholar]
  17. Mozingo N. M., Hedrick J. L. Distribution of lectin binding sites in Xenopus laevis egg jelly. Dev Biol. 1999 Jun 15;210(2):428–439. doi: 10.1006/dbio.1999.9289. [DOI] [PubMed] [Google Scholar]
  18. Nollet S., Moniaux N., Maury J., Petitprez D., Degand P., Laine A., Porchet N., Aubert J. P. Human mucin gene MUC4: organization of its 5'-region and polymorphism of its central tandem repeat array. Biochem J. 1998 Jun 15;332(Pt 3):739–748. doi: 10.1042/bj3320739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Olson J. H., Chandler D. E. Xenopus laevis egg jelly contains small proteins that are essential to fertilization. Dev Biol. 1999 Jun 15;210(2):401–410. doi: 10.1006/dbio.1999.9281. [DOI] [PubMed] [Google Scholar]
  20. Oriol R., Mollicone R., Cailleau A., Balanzino L., Breton C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology. 1999 Apr;9(4):323–334. doi: 10.1093/glycob/9.4.323. [DOI] [PubMed] [Google Scholar]
  21. Probst J. C., Hauser F., Joba W., Hoffmann W. The polymorphic integumentary mucin B.1 from Xenopus laevis contains the short consensus repeat. J Biol Chem. 1992 Mar 25;267(9):6310–6316. [PubMed] [Google Scholar]
  22. Quill T. A., Hedrick J. L. The fertilization layer mediated block to polyspermy in Xenopus laevis: isolation of the cortical granule lectin ligand. Arch Biochem Biophys. 1996 Sep 15;333(2):326–332. doi: 10.1006/abbi.1996.0398. [DOI] [PubMed] [Google Scholar]
  23. Rahmoune H., Lamblin G., Lafitte J. J., Galabert C., Filliat M., Roussel P. Chondroitin sulfate in sputum from patients with cystic fibrosis and chronic bronchitis. Am J Respir Cell Mol Biol. 1991 Oct;5(4):315–320. doi: 10.1165/ajrcmb/5.4.315. [DOI] [PubMed] [Google Scholar]
  24. Reinhart D., Ridgway J., Chandler D. E. Xenopus laevis fertilisation: analysis of sperm motility in egg jelly using video light microscopy. Zygote. 1998 May;6(2):173–182. doi: 10.1017/s0967199498000100. [DOI] [PubMed] [Google Scholar]
  25. Strecker G., Wieruszeski J. M., Fontaine M. D., Plancke Y. Structure of the major neutral oligosaccharide-alditols released from the egg jelly coats of Axolotl maculatum. Characterization of the carbohydrate sequence GalNAc(beta 1-4)[Fuc(alpha 1-3)] GlcNAc(beta 1-3/6). Glycobiology. 1994 Oct;4(5):605–609. doi: 10.1093/glycob/4.5.605. [DOI] [PubMed] [Google Scholar]
  26. Strecker G., Wieruszeski J. M., Michalski J. C., Montreuil J. 1H-and 13C-n.m.r. spectroscopy of 2-oxo-3-deoxy-D-glycero-D- galactononulosonic acid-containing oligosaccharide-alditols bearing Lewis X, Lewis Y and A-Lewis Y determinants isolated from the jelly coat of Pleurodeles waltl eggs. Biochem J. 1992 Nov 1;287(Pt 3):905–909. doi: 10.1042/bj2870905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strecker G., Wieruszeski J. M., Plancke Y., Boilly B. Primary structure of 12 neutral oligosaccharide-alditols released from the jelly coats of the anuran Xenopus laevis by reductive beta-elimination. Glycobiology. 1995 Feb;5(1):137–146. doi: 10.1093/glycob/5.1.137. [DOI] [PubMed] [Google Scholar]
  28. Swallow D. M., Gendler S., Griffiths B., Corney G., Taylor-Papadimitriou J., Bramwell M. E. The human tumour-associated epithelial mucins are coded by an expressed hypervariable gene locus PUM. Nature. 1987 Jul 2;328(6125):82–84. doi: 10.1038/328082a0. [DOI] [PubMed] [Google Scholar]
  29. Tian J., Gong H., Thomsen G. H., Lennarz W. J. Gamete interactions in Xenopus laevis: identification of sperm binding glycoproteins in the egg vitelline envelope. J Cell Biol. 1997 Mar 10;136(5):1099–1108. doi: 10.1083/jcb.136.5.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tseng K., Lindsay L. L., Penn S., Hedrick J. L., Lebrilla C. B. Characterization of neutral oligosaccharide-alditols from Xenopus laevis egg jelly coats by matrix-assisted laser desorption Fourier transform mass spectrometry. Anal Biochem. 1997 Jul 15;250(1):18–28. doi: 10.1006/abio.1997.2193. [DOI] [PubMed] [Google Scholar]
  31. Wickström C., Davies J. R., Eriksen G. V., Veerman E. C., Carlstedt I. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J. 1998 Sep 15;334(Pt 3):685–693. doi: 10.1042/bj3340685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wyrick R. E., Nishihara T., Hedrick J. L. Agglutination of jelly coat and cortical granule components and the block to polyspermy in the amphibian Xenopus laevis. Proc Natl Acad Sci U S A. 1974 May;71(5):2067–2071. doi: 10.1073/pnas.71.5.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yamamoto F., Clausen H., White T., Marken J., Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature. 1990 May 17;345(6272):229–233. doi: 10.1038/345229a0. [DOI] [PubMed] [Google Scholar]
  34. Yurewixz E. C., Oliphant G., Hedrick J. L. The macromolecular composition of Xenopus laevis egg jelly coat. Biochemistry. 1975 Jul 15;14(14):3101–3107. doi: 10.1021/bi00685a010. [DOI] [PubMed] [Google Scholar]
  35. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES