Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 15;352(Pt 3):623–628.

Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism.

J Kerovuo 1, J Rouvinen 1, F Hatzack 1
PMCID: PMC1221497  PMID: 11104666

Abstract

Phytic acid (myo-inositol hexakisphosphate, InsP(6)) hydrolysis by Bacillus phytase (PhyC) was studied. The enzyme hydrolyses only three phosphates from phytic acid. Moreover, the enzyme seems to prefer the hydrolysis of every second phosphate over that of adjacent ones. Furthermore, it is very likely that the enzyme has two alternative pathways for the hydrolysis of phytic acid, resulting in two different myo-inositol trisphosphate end products: Ins(2,4,6)P(3) and Ins(1,3,5)P(3). These results, together with inhibition studies with fluoride, vanadate, substrate and a substrate analogue, indicate a reaction mechanism different from that of other phytases. By combining the data presented in this study with (1) structural information obtained from the crystal structure of Bacillus amyloliquefaciens phytase [Ha, Oh, Shin, Kim, Oh, Kim, Choi and Oh (2000) Nat. Struct. Biol. 7, 147-153], and (2) computer-modelling analyses of enzyme-substrate complexes, a novel mode of phytic acid hydrolysis is proposed.

Full Text

The Full Text of this article is available as a PDF (227.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrientos L., Scott J. J., Murthy P. P. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol. 1994 Dec;106(4):1489–1495. doi: 10.1104/pp.106.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  4. Chi H., Tiller G. E., Dasouki M. J., Romano P. R., Wang J., O'keefe R. J., Puzas J. E., Rosier R. N., Reynolds P. R. Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19. Genomics. 1999 Mar 15;56(3):324–336. doi: 10.1006/geno.1998.5736. [DOI] [PubMed] [Google Scholar]
  5. Coleman J. E. Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct. 1992;21:441–483. doi: 10.1146/annurev.bb.21.060192.002301. [DOI] [PubMed] [Google Scholar]
  6. Craxton A., Caffrey J. J., Burkhart W., Safrany S. T., Shears S. B. Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem J. 1997 Nov 15;328(Pt 1):75–81. doi: 10.1042/bj3280075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dvoráková J. Phytase: sources, preparation and exploitation. Folia Microbiol (Praha) 1998;43(4):323–338. doi: 10.1007/BF02818571. [DOI] [PubMed] [Google Scholar]
  8. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  9. Freund W. D., Mayr G. W., Tietz C., Schultz J. E. Metabolism of inositol phosphates in the protozoan Paramecium. Characterization of a novel inositol-hexakisphosphate-dephosphorylating enzyme. Eur J Biochem. 1992 Jul 1;207(1):359–367. doi: 10.1111/j.1432-1033.1992.tb17058.x. [DOI] [PubMed] [Google Scholar]
  10. Gibson D. M., Ullah A. H. Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys. 1988 Feb 1;260(2):503–513. doi: 10.1016/0003-9861(88)90475-4. [DOI] [PubMed] [Google Scholar]
  11. Greiner R., Haller E., Konietzny U., Jany K. D. Purification and characterization of a phytase from Klebsiella terrigena. Arch Biochem Biophys. 1997 May 15;341(2):201–206. doi: 10.1006/abbi.1997.9942. [DOI] [PubMed] [Google Scholar]
  12. Greiner R., Konietzny U., Jany K. D. Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys. 1993 May 15;303(1):107–113. doi: 10.1006/abbi.1993.1261. [DOI] [PubMed] [Google Scholar]
  13. Ha N. C., Oh B. C., Shin S., Kim H. J., Oh T. K., Kim Y. O., Choi K. Y., Oh B. H. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nat Struct Biol. 2000 Feb;7(2):147–153. doi: 10.1038/72421. [DOI] [PubMed] [Google Scholar]
  14. Irving G. C., Cosgrove D. J. Inositol phosphate phosphatases of microbiological origin. Observations on the nature of the active centre of a bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci. 1971 Jun;24(3):559–564. doi: 10.1071/bi9710559. [DOI] [PubMed] [Google Scholar]
  15. Kerovuo J., Lauraeus M., Nurminen P., Kalkkinen N., Apajalahti J. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol. 1998 Jun;64(6):2079–2085. doi: 10.1128/aem.64.6.2079-2085.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim E. E., Wyckoff H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol. 1991 Mar 20;218(2):449–464. doi: 10.1016/0022-2836(91)90724-k. [DOI] [PubMed] [Google Scholar]
  17. Kim Y. O., Lee J. K., Kim H. K., Yu J. H., Oh T. K. Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett. 1998 May 1;162(1):185–191. doi: 10.1111/j.1574-6968.1998.tb12997.x. [DOI] [PubMed] [Google Scholar]
  18. Mitchell D. B., Vogel K., Weimann B. J., Pasamontes L., van Loon A. P. The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology. 1997 Jan;143(Pt 1):245–252. doi: 10.1099/00221287-143-1-245. [DOI] [PubMed] [Google Scholar]
  19. Ostanin K., Harms E. H., Stevis P. E., Kuciel R., Zhou M. M., Van Etten R. L. Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J Biol Chem. 1992 Nov 15;267(32):22830–22836. [PubMed] [Google Scholar]
  20. Ostanin K., Van Etten R. L. Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J Biol Chem. 1993 Oct 5;268(28):20778–20784. [PubMed] [Google Scholar]
  21. Piddington C. S., Houston C. S., Paloheimo M., Cantrell M., Miettinen-Oinonen A., Nevalainen H., Rambosek J. The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene. 1993 Oct 29;133(1):55–62. doi: 10.1016/0378-1119(93)90224-q. [DOI] [PubMed] [Google Scholar]
  22. Powar V. K., Jagannathan V. Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol. 1982 Sep;151(3):1102–1108. doi: 10.1128/jb.151.3.1102-1108.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shah V., Parekh L. J. Phytase from Klebsiella Sp. No. PG-2: purification and properties. Indian J Biochem Biophys. 1990 Apr;27(2):98–102. [PubMed] [Google Scholar]
  24. Sutardi, Buckle K. A. Characterization of extra- and intracellular phytases from Rhizopus oligosporus used in tempeh production. Int J Food Microbiol. 1988 Feb;6(1):67–79. doi: 10.1016/0168-1605(88)90086-4. [DOI] [PubMed] [Google Scholar]
  25. Ullah A. H., Cummins B. J., Dischinger H. C., Jr Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase. Biochem Biophys Res Commun. 1991 Jul 15;178(1):45–53. doi: 10.1016/0006-291x(91)91777-a. [DOI] [PubMed] [Google Scholar]
  26. Ullah A. H. Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum. Prep Biochem. 1988;18(4):443–458. doi: 10.1080/00327488808062543. [DOI] [PubMed] [Google Scholar]
  27. Ullah A. H., Sethumadhavan K. Myo-inositol hexasulfate is a potent inhibitor of Aspergillus ficuum phytase. Biochem Biophys Res Commun. 1998 Oct 9;251(1):260–263. doi: 10.1006/bbrc.1998.9456. [DOI] [PubMed] [Google Scholar]
  28. Van Dijken P., de Haas J. R., Craxton A., Erneux C., Shears S. B., Van Haastert P. J. A novel, phospholipase C-independent pathway of inositol 1,4,5-trisphosphate formation in Dictyostelium and rat liver. J Biol Chem. 1995 Dec 15;270(50):29724–29731. doi: 10.1074/jbc.270.50.29724. [DOI] [PubMed] [Google Scholar]
  29. Van Etten R. L. Human prostatic acid phosphatase: a histidine phosphatase. Ann N Y Acad Sci. 1982;390:27–51. doi: 10.1111/j.1749-6632.1982.tb40302.x. [DOI] [PubMed] [Google Scholar]
  30. Vincent J. B., Crowder M. W., Averill B. A. Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci. 1992 Mar;17(3):105–110. doi: 10.1016/0968-0004(92)90246-6. [DOI] [PubMed] [Google Scholar]
  31. Wyss M., Brugger R., Kronenberger A., Rémy R., Fimbel R., Oesterhelt G., Lehmann M., van Loon A. P. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol. 1999 Feb;65(2):367–373. doi: 10.1128/aem.65.2.367-373.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zhang M., Zhou M., Van Etten R. L., Stauffacher C. V. Crystal structure of bovine low molecular weight phosphotyrosyl phosphatase complexed with the transition state analog vanadate. Biochemistry. 1997 Jan 7;36(1):15–23. doi: 10.1021/bi961804n. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES