Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 15;352(Pt 3):629–635.

Organization, chromosomal localization and promoter analysis of the gene encoding human acidic fibroblast growth factor intracellular binding protein.

E Kolpakova 1, E Frengen 1, T Stokke 1, S Olsnes 1
PMCID: PMC1221498  PMID: 11104667

Abstract

Acidic fibroblast growth factor (aFGF) intracellular binding protein (FIBP) is a protein found mainly in the nucleus that might be involved in the intracellular function of aFGF. Here we present a comparative analysis of the deduced amino acid sequences of human, murine and Drosophila FIBP analogues and demonstrate that FIBP is an evolutionarily conserved protein. The human gene spans more than 5 kb, comprising ten exons and nine introns, and maps to chromosome 11q13.1. Two slightly different splice variants found in different tissues were isolated and characterized. Sequence analysis of the region surrounding the translation start revealed a CpG island, a classical feature of widely expressed genes. Functional studies of the promoter region with a luciferase reporter system suggested a strong transcriptional activity residing within 600 bp of the 5' flanking region.

Full Text

The Full Text of this article is available as a PDF (272.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bartkova J., Lukas J., Müller H., Strauss M., Gusterson B., Bartek J. Abnormal patterns of D-type cyclin expression and G1 regulation in human head and neck cancer. Cancer Res. 1995 Feb 15;55(4):949–956. [PubMed] [Google Scholar]
  3. Bièche I., Lidereau R. Genetic alterations in breast cancer. Genes Chromosomes Cancer. 1995 Dec;14(4):227–251. doi: 10.1002/gcc.2870140402. [DOI] [PubMed] [Google Scholar]
  4. Burgess W. H., Friesel R., Winkles J. A. Structure-function studies of FGF-1: dissociation and partial reconstitution of certain of its biological activities. Mol Reprod Dev. 1994 Sep;39(1):56–61. doi: 10.1002/mrd.1080390110. [DOI] [PubMed] [Google Scholar]
  5. Burgess W. H., Shaheen A. M., Ravera M., Jaye M., Donohue P. J., Winkles J. A. Possible dissociation of the heparin-binding and mitogenic activities of heparin-binding (acidic fibroblast) growth factor-1 from its receptor-binding activities by site-directed mutagenesis of a single lysine residue. J Cell Biol. 1990 Nov;111(5 Pt 1):2129–2138. doi: 10.1083/jcb.111.5.2129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox D. R., Burmeister M., Price E. R., Kim S., Myers R. M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science. 1990 Oct 12;250(4978):245–250. doi: 10.1126/science.2218528. [DOI] [PubMed] [Google Scholar]
  8. Cross S. H., Charlton J. A., Nan X., Bird A. P. Purification of CpG islands using a methylated DNA binding column. Nat Genet. 1994 Mar;6(3):236–244. doi: 10.1038/ng0394-236. [DOI] [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  10. Galteland E., Holte H., Stokke T. c-MYC, RB-1, TP53, and centromere 8 and 17 copy number in B-cell non-Hodgkin's lymphomas assessed by dual-color fluorescence in situ hybridization. Cytometry. 1999 Apr 15;38(2):53–60. doi: 10.1002/(sici)1097-0320(19990415)38:2<53::aid-cyto2>3.3.co;2-s. [DOI] [PubMed] [Google Scholar]
  11. Gardiner-Garden M., Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261–282. doi: 10.1016/0022-2836(87)90689-9. [DOI] [PubMed] [Google Scholar]
  12. Gaudray P., Szepetowski P., Escot C., Birnbaum D., Theillet C. DNA amplification at 11q13 in human cancer: from complexity to perplexity. Mutat Res. 1992 May;276(3):317–328. doi: 10.1016/0165-1110(92)90018-5. [DOI] [PubMed] [Google Scholar]
  13. Gudmundsson J., Barkardottir R. B., Eiriksdottir G., Baldursson T., Arason A., Egilsson V., Ingvarsson S. Loss of heterozygosity at chromosome 11 in breast cancer: association of prognostic factors with genetic alterations. Br J Cancer. 1995 Sep;72(3):696–701. doi: 10.1038/bjc.1995.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Imamura T., Engleka K., Zhan X., Tokita Y., Forough R., Roeder D., Jackson A., Maier J. A., Hla T., Maciag T. Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science. 1990 Sep 28;249(4976):1567–1570. doi: 10.1126/science.1699274. [DOI] [PubMed] [Google Scholar]
  15. Ioannou P. A., Amemiya C. T., Garnes J., Kroisel P. M., Shizuya H., Chen C., Batzer M. A., de Jong P. J. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet. 1994 Jan;6(1):84–89. doi: 10.1038/ng0194-84. [DOI] [PubMed] [Google Scholar]
  16. Karlseder J., Zeillinger R., Schneeberger C., Czerwenka K., Speiser P., Kubista E., Birnbaum D., Gaudray P., Theillet C. Patterns of DNA amplification at band q13 of chromosome 11 in human breast cancer. Genes Chromosomes Cancer. 1994 Jan;9(1):42–48. doi: 10.1002/gcc.2870090108. [DOI] [PubMed] [Google Scholar]
  17. Klingenberg O., Widlocha A., Rapak A., Muñoz R., Falnes P., Olsnes S. Inability of the acidic fibroblast growth factor mutant K132E to stimulate DNA synthesis after translocation into cells. J Biol Chem. 1998 May 1;273(18):11164–11172. doi: 10.1074/jbc.273.18.11164. [DOI] [PubMed] [Google Scholar]
  18. Kolpakova E., Wiedłocha A., Stenmark H., Klingenberg O., Falnes P. O., Olsnes S. Cloning of an intracellular protein that binds selectively to mitogenic acidic fibroblast growth factor. Biochem J. 1998 Nov 15;336(Pt 1):213–222. doi: 10.1042/bj3360213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lammie G. A., Peters G. Chromosome 11q13 abnormalities in human cancer. Cancer Cells. 1991 Nov;3(11):413–420. [PubMed] [Google Scholar]
  20. Larsen F., Gundersen G., Lopez R., Prydz H. CpG islands as gene markers in the human genome. Genomics. 1992 Aug;13(4):1095–1107. doi: 10.1016/0888-7543(92)90024-m. [DOI] [PubMed] [Google Scholar]
  21. Mehta V. B., Connors L., Wang H. C., Chiu I. M. Fibroblast variants nonresponsive to fibroblast growth factor 1 are defective in its nuclear translocation. J Biol Chem. 1998 Feb 13;273(7):4197–4205. doi: 10.1074/jbc.273.7.4197. [DOI] [PubMed] [Google Scholar]
  22. Mewes H. W., Albermann K., Bähr M., Frishman D., Gleissner A., Hani J., Heumann K., Kleine K., Maierl A., Oliver S. G. Overview of the yeast genome. Nature. 1997 May 29;387(6632 Suppl):7–65. doi: 10.1038/42755. [DOI] [PubMed] [Google Scholar]
  23. Tazi J., Bird A. Alternative chromatin structure at CpG islands. Cell. 1990 Mar 23;60(6):909–920. doi: 10.1016/0092-8674(90)90339-g. [DOI] [PubMed] [Google Scholar]
  24. Wex T., Levy B., Smeekens S. P., Ansorge S., Desnick R. J., Bromme D. Genomic structure, chromosomal localization, and expression of human cathepsin W. Biochem Biophys Res Commun. 1998 Jul 20;248(2):255–261. doi: 10.1006/bbrc.1998.8954. [DOI] [PubMed] [Google Scholar]
  25. Wiedłocha A., Falnes P. O., Madshus I. H., Sandvig K., Olsnes S. Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell. 1994 Mar 25;76(6):1039–1051. doi: 10.1016/0092-8674(94)90381-6. [DOI] [PubMed] [Google Scholar]
  26. Wiedłocha A., Falnes P. O., Rapak A., Klingenberg O., Muñoz R., Olsnes S. Translocation of cytosol of exogenous, CAAX-tagged acidic fibroblast growth factor. J Biol Chem. 1995 Dec 22;270(51):30680–30685. doi: 10.1074/jbc.270.51.30680. [DOI] [PubMed] [Google Scholar]
  27. Wiedłocha A., Falnes P. O., Rapak A., Muñoz R., Klingenberg O., Olsnes S. Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization. Mol Cell Biol. 1996 Jan;16(1):270–280. doi: 10.1128/mcb.16.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wong K. F. 11q13 is a cytogenetically promiscuous site in hematologic malignancies. Cancer Genet Cytogenet. 1999 Aug;113(1):93–95. doi: 10.1016/s0165-4608(98)00285-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES