Abstract
Human dihydrodiol dehydrogenase with 3alpha-hydroxysteroid dehydrogenase activity exists in four forms (AKR1C1-1C4) that belong to the aldo-keto reductase (AKR) family. Recent crystallographic studies on the other proteins in this family have indicated a role for a tyrosine residue (corresponding to position 216 in these isoenzymes) in stacking the nicotinamide ring of the coenzyme. This tyrosine residue is conserved in most AKR family members including AKR1C1-1C3, but is replaced with histidine in AKR1C4 and phenylalanine in some AKR members. In the present study we prepared mutant enzymes of AKR1C4 in which His-216 was replaced with tyrosine or phenylalanine. The two mutations decreased 3-fold the K(m) for NADP(+) and differently influenced the K(m) and k(cat) for substrates depending on their structures. The kinetic constants for bile acids with a 12alpha-hydroxy group were decreased 1.5-7-fold and those for the other substrates were increased 1.3-9-fold. The mutation also yielded different changes in sensitivity to competitive inhibitors such as hexoestrol analogues, 17beta-oestradiol, phenolphthalein and flufenamic acid and 3,5,3', 5'-tetraiodothyropropionic acid analogues. Furthermore, the mutation decreased the stimulatory effects of the enzyme activity by sulphobromophthalein, clofibric acid and thyroxine, which increased the K(m) for the coenzyme and substrate of the mutant enzymes more highly than those of the wild-type enzyme. These results indicate the importance of this histidine residue in creating the cavity of the substrate-binding site of AKR1C4 through the orientation of the nicotinamide ring of the coenzyme, as well as its involvement in the conformational change by binding non-essential activators.
Full Text
The Full Text of this article is available as a PDF (142.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barski O. A., Gabbay K. H., Bohren K. M. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity. Biochemistry. 1996 Nov 12;35(45):14276–14280. doi: 10.1021/bi9619740. [DOI] [PubMed] [Google Scholar]
- Bennett M. J., Albert R. H., Jez J. M., Ma H., Penning T. M., Lewis M. Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. Structure. 1997 Jun 15;5(6):799–812. doi: 10.1016/s0969-2126(97)00234-7. [DOI] [PubMed] [Google Scholar]
- Bohren K. M., Grimshaw C. E., Gabbay K. H. Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. J Biol Chem. 1992 Oct 15;267(29):20965–20970. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Deyashiki Y., Ogasawara A., Nakayama T., Nakanishi M., Miyabe Y., Sato K., Hara A. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. Biochem J. 1994 Apr 15;299(Pt 2):545–552. doi: 10.1042/bj2990545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deyashiki Y., Tamada Y., Miyabe Y., Nakanishi M., Matsuura K., Hara A. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver. J Biochem. 1995 Aug;118(2):285–290. doi: 10.1093/oxfordjournals.jbchem.a124904. [DOI] [PubMed] [Google Scholar]
- Deyashiki Y., Taniguchi H., Amano T., Nakayama T., Hara A., Sawada H. Structural and functional comparison of two human liver dihydrodiol dehydrogenases associated with 3 alpha-hydroxysteroid dehydrogenase activity. Biochem J. 1992 Mar 15;282(Pt 3):741–746. doi: 10.1042/bj2820741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hara A., Taniguchi H., Nakayama T., Sawada H. Purification and properties of multiple forms of dihydrodiol dehydrogenase from human liver. J Biochem. 1990 Aug;108(2):250–254. doi: 10.1093/oxfordjournals.jbchem.a123189. [DOI] [PubMed] [Google Scholar]
- Harrison D. H., Bohren K. M., Ringe D., Petsko G. A., Gabbay K. H. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry. 1994 Mar 1;33(8):2011–2020. doi: 10.1021/bi00174a006. [DOI] [PubMed] [Google Scholar]
- Jez J. M., Bennett M. J., Schlegel B. P., Lewis M., Penning T. M. Comparative anatomy of the aldo-keto reductase superfamily. Biochem J. 1997 Sep 15;326(Pt 3):625–636. doi: 10.1042/bj3260625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jez J. M., Flynn T. G., Penning T. M. A new nomenclature for the aldo-keto reductase superfamily. Biochem Pharmacol. 1997 Sep 15;54(6):639–647. doi: 10.1016/s0006-2952(97)84253-0. [DOI] [PubMed] [Google Scholar]
- Jez J. M., Schlegel B. P., Penning T. M. Characterization of the substrate binding site in rat liver 3alpha-hydroxysteroid/dihydrodiol dehydrogenase. The roles of tryptophans in ligand binding and protein fluorescence. J Biol Chem. 1996 Nov 22;271(47):30190–30198. doi: 10.1074/jbc.271.47.30190. [DOI] [PubMed] [Google Scholar]
- Kanayama Y., Mori H., Imaseki H., Yamaki S. Nucleotide Sequence of a cDNA Encoding NADP-Sorbitol-6-Phosphate Dehydrogenase from Apple. Plant Physiol. 1992 Nov;100(3):1607–1608. doi: 10.1104/pp.100.3.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khanna M., Qin K. N., Wang R. W., Cheng K. C. Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3 alpha-hydroxysteroid dehydrogenases. J Biol Chem. 1995 Aug 25;270(34):20162–20168. doi: 10.1074/jbc.270.34.20162. [DOI] [PubMed] [Google Scholar]
- Khurana S., Powers D. B., Anderson S., Blaber M. Crystal structure of 2,5-diketo-D-gluconic acid reductase A complexed with NADPH at 2.1-A resolution. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6768–6773. doi: 10.1073/pnas.95.12.6768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lin H. K., Jez J. M., Schlegel B. P., Peehl D. M., Pachter J. A., Penning T. M. Expression and characterization of recombinant type 2 3 alpha-hydroxysteroid dehydrogenase (HSD) from human prostate: demonstration of bifunctional 3 alpha/17 beta-HSD activity and cellular distribution. Mol Endocrinol. 1997 Dec;11(13):1971–1984. doi: 10.1210/mend.11.13.0026. [DOI] [PubMed] [Google Scholar]
- Ma H., Ratnam K., Penning T. M. Mutation of nicotinamide pocket residues in rat liver 3 alpha-hydroxysteroid dehydrogenase reveals different modes of cofactor binding. Biochemistry. 2000 Jan 11;39(1):102–109. doi: 10.1021/bi991659o. [DOI] [PubMed] [Google Scholar]
- Matsuura K., Deyashiki Y., Sato K., Ishida N., Miwa G., Hara A. Identification of amino acid residues responsible for differences in substrate specificity and inhibitor sensitivity between two human liver dihydrodiol dehydrogenase isoenzymes by site-directed mutagenesis. Biochem J. 1997 Apr 1;323(Pt 1):61–64. doi: 10.1042/bj3230061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuura K., Hara A., Deyashiki Y., Iwasa H., Kume T., Ishikura S., Shiraishi H., Katagiri Y. Roles of the C-terminal domains of human dihydrodiol dehydrogenase isoforms in the binding of substrates and modulators: probing with chimaeric enzymes. Biochem J. 1998 Dec 1;336(Pt 2):429–436. doi: 10.1042/bj3360429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuura K., Hara A., Kato M., Deyashiki Y., Miyabe Y., Ishikura S., Sugiyama T., Katagiri Y. Activation of human liver 3alpha-hydroxysteroid dehydrogenase by clofibrate derivatives. J Pharmacol Exp Ther. 1998 Jun;285(3):1096–1103. [PubMed] [Google Scholar]
- Matsuura K., Shiraishi H., Hara A., Sato K., Deyashiki Y., Ninomiya M., Sakai S. Identification of a principal mRNA species for human 3alpha-hydroxysteroid dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D2 11-ketoreductase activity. J Biochem. 1998 Nov;124(5):940–946. doi: 10.1093/oxfordjournals.jbchem.a022211. [DOI] [PubMed] [Google Scholar]
- Matsuura K., Tamada Y., Deyashiki Y., Miyabe Y., Nakanishi M., Ohya I., Hara A. Activation of human liver 3 alpha-hydroxysteroid dehydrogenase by sulphobromophthalein. Biochem J. 1996 Jan 1;313(Pt 1):179–184. doi: 10.1042/bj3130179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuura K., Tamada Y., Sato K., Iwasa H., Miwa G., Deyashiki Y., Hara A. Involvement of two basic residues (Lys-270 and Arg-276) of human liver 3 alpha-hydroxysteroid dehydrogenase in NADP(H) binding and activation by sulphobromophthalein: site-directed mutagenesis and kinetic analysis. Biochem J. 1997 Feb 15;322(Pt 1):89–93. doi: 10.1042/bj3220089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohara H., Nakayama T., Deyashiki Y., Hara A., Miyabe Y., Tsukada F. Reduction of prostaglandin D2 to 9 alpha,11 beta-prostaglandin F2 by a human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):59–65. doi: 10.1016/0005-2760(94)90091-4. [DOI] [PubMed] [Google Scholar]
- Peltoketo H., Luu-The V., Simard J., Adamski J. 17beta-hydroxysteroid dehydrogenase (HSD)/17-ketosteroid reductase (KSR) family; nomenclature and main characteristics of the 17HSD/KSR enzymes. J Mol Endocrinol. 1999 Aug;23(1):1–11. doi: 10.1677/jme.0.0230001. [DOI] [PubMed] [Google Scholar]
- Penning T. M. Molecular determinants of steroid recognition and catalysis in aldo-keto reductases. Lessons from 3alpha-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol. 1999 Apr-Jun;69(1-6):211–225. doi: 10.1016/s0960-0760(99)00038-2. [DOI] [PubMed] [Google Scholar]
- Petrash J. M., Tarle I., Wilson D. K., Quiocho F. A. Aldose reductase catalysis and crystallography. Insights from recent advances in enzyme structure and function. Diabetes. 1994 Aug;43(8):955–959. doi: 10.2337/diab.43.8.955. [DOI] [PubMed] [Google Scholar]
- Qin K. N., New M. I., Cheng K. C. Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3 alpha-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol. 1993 Dec;46(6):673–679. doi: 10.1016/0960-0760(93)90308-j. [DOI] [PubMed] [Google Scholar]
- Shiraishi H., Ishikura S., Matsuura K., Deyashiki Y., Ninomiya M., Sakai S., Hara A. Sequence of the cDNA of a human dihydrodiol dehydrogenase isoform (AKR1C2) and tissue distribution of its mRNA. Biochem J. 1998 Sep 1;334(Pt 2):399–405. doi: 10.1042/bj3340399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stolz A., Hammond L., Lou H., Takikawa H., Ronk M., Shively J. E. cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. J Biol Chem. 1993 May 15;268(14):10448–10457. [PubMed] [Google Scholar]
- Wilson D. K., Nakano T., Petrash J. M., Quiocho F. A. 1.7 A structure of FR-1, a fibroblast growth factor-induced member of the aldo-keto reductase family, complexed with coenzyme and inhibitor. Biochemistry. 1995 Nov 7;34(44):14323–14330. doi: 10.1021/bi00044a009. [DOI] [PubMed] [Google Scholar]
- Wilson D. K., Tarle I., Petrash J. M., Quiocho F. A. Refined 1.8 A structure of human aldose reductase complexed with the potent inhibitor zopolrestat. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9847–9851. doi: 10.1073/pnas.90.21.9847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto T., Matsuura K., Shintani S., Hara A., Miyabe Y., Sugiyama T., Katagiri Y. Dual effects of anti-inflammatory 2-arylpropionic acid derivatives on a major isoform of human liver 3alpha-hydroxysteroid dehydrogenase. Biol Pharm Bull. 1998 Nov;21(11):1148–1153. doi: 10.1248/bpb.21.1148. [DOI] [PubMed] [Google Scholar]
- Yamamoto T., Nozaki A., Shintani S., Ishikura S., Katagiri Y., Hara A. Structure-specific effects of thyroxine analogs on human liver 3 alpha-hydroxysteroid dehydrogenase. J Biochem. 2000 Jul;128(1):121–128. doi: 10.1093/oxfordjournals.jbchem.a022722. [DOI] [PubMed] [Google Scholar]
- el-Kabbani O., Judge K., Ginell S. L., Myles D. A., DeLucas L. J., Flynn T. G. Structure of porcine aldehyde reductase holoenzyme. Nat Struct Biol. 1995 Aug;2(8):687–692. doi: 10.1038/nsb0895-687. [DOI] [PubMed] [Google Scholar]