Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 15;352(Pt 3):731–738.

Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: role of thyroid hormone status and lipid supply.

M C Sugden 1, M L Langdown 1, R A Harris 1, M J Holness 1
PMCID: PMC1221511  PMID: 11104680

Abstract

Activation of the pyruvate dehydrogenase (PDH) complex (PDHC) promotes glucose disposal, whereas inactivation conserves glucose. The PDH kinases (PDHKs) regulate glucose oxidation through inhibitory phosphorylation of PDHC. The adult rat heart contains three PDHK isoforms PDHK1, PDHK2 and PDHK4. Using Western-blot analysis, with specific antibodies raised against individual recombinant PDHK1, PDHK2 and PDHK4, the present study investigated PDHK isoform expression in the developing rat heart and adulthood. We identified clear differences in the patterns of protein expression of each of these PDHK isoforms during the first 3 weeks of post-natal development, with most marked up-regulation of isoforms PDHK1 and PDHK4. Distinctions between the three cardiac PDHK isoforms were also demonstrated with respect to post-neonatal maturational up-regulation; with greatest up-regulation of PDHK1 and least up-regulation of PDHK4 from the post-neonatal period until maturity. The study also examined the role of thyroid hormone status and lipid supply on PDHK isoform expression. We observed marked selective increases in the amount of PDHK4 protein present relative to total cardiac protein in both hyperthyroidism and high-fat feeding. Overall, our data identify PDHK isoform PDHK1 as being of more potential regulatory importance for glucose oxidation in the adult compared with the neonatal heart, and cardiac PDHK4 as a PDHK isoform whose expression is specifically responsive to changes in lipid supply, suggesting that its up-regulation during early post-natal life may be the perinatal switch to use fatty acids as the energy source. We also identify regulation of pyruvate sensitivity of cardiac PDHK as a physiological variable, a change in which requires factors in addition to a change in lipid supply.

Full Text

The Full Text of this article is available as a PDF (197.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awan M. M., Saggerson E. D. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J. 1993 Oct 1;295(Pt 1):61–66. doi: 10.1042/bj2950061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop S. P., Altschuld R. A. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am J Physiol. 1970 Jan;218(1):153–159. doi: 10.1152/ajplegacy.1970.218.1.153. [DOI] [PubMed] [Google Scholar]
  3. Bowker-Kinley M. M., Davis W. I., Wu P., Harris R. A., Popov K. M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998 Jan 1;329(Pt 1):191–196. doi: 10.1042/bj3290191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brosius F. C., 3rd, Liu Y., Nguyen N., Sun D., Bartlett J., Schwaiger M. Persistent myocardial ischemia increases GLUT1 glucose transporter expression in both ischemic and non-ischemic heart regions. J Mol Cell Cardiol. 1997 Jun;29(6):1675–1685. doi: 10.1006/jmcc.1997.0405. [DOI] [PubMed] [Google Scholar]
  6. Brown N. F., Weis B. C., Husti J. E., Foster D. W., McGarry J. D. Mitochondrial carnitine palmitoyltransferase I isoform switching in the developing rat heart. J Biol Chem. 1995 Apr 14;270(15):8952–8957. doi: 10.1074/jbc.270.15.8952. [DOI] [PubMed] [Google Scholar]
  7. Carter T. C., Coore H. G. Effects of pyruvate on pyruvate dehydrogenase kinase of rat heart. Mol Cell Biochem. 1995 Aug-Sep;149-150:71–75. doi: 10.1007/BF01076565. [DOI] [PubMed] [Google Scholar]
  8. Castelló A., Rodríguez-Manzaneque J. C., Camps M., Pérez-Castillo A., Testar X., Palacín M., Santos A., Zorzano A. Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1 glucose transporters from fetal to neonatal levels in heart and brown adipose tissue. Evidence for tissue-specific regulation of GLUT4 expression by thyroid hormone. J Biol Chem. 1994 Feb 25;269(8):5905–5912. [PubMed] [Google Scholar]
  9. Caterson I. D., Fuller S. J., Randle P. J. Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats. Biochem J. 1982 Oct 15;208(1):53–60. doi: 10.1042/bj2080053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Christe M. E., Rodgers R. L. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol. 1994 Oct;26(10):1371–1375. doi: 10.1006/jmcc.1994.1155. [DOI] [PubMed] [Google Scholar]
  11. Cooper R. H., Randle P. J., Denton R. M. Regulation of heart muscle pyruvate dehydrogenase kinase. Biochem J. 1974 Dec;143(3):625–641. doi: 10.1042/bj1430625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cooper R. H., Randle P. J., Denton R. M. Stimulation of phosphorylation and inactivation of pyruvate dehydrogenase by physiological inhibitors of the pyruvate dehydrogenase reaction. Nature. 1975 Oct 30;257(5529):808–809. doi: 10.1038/257808a0. [DOI] [PubMed] [Google Scholar]
  13. Fischer Y., Thomas J., Sevilla L., Muñoz P., Becker C., Holman G., Kozka I. J., Palacín M., Testar X., Kammermeier H. Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem. 1997 Mar 14;272(11):7085–7092. doi: 10.1074/jbc.272.11.7085. [DOI] [PubMed] [Google Scholar]
  14. Fryer L. G., Orfali K. A., Holness M. J., Saggerson E. D., Sugden M. C. The long-term regulation of skeletal muscle pyruvate dehydrogenase kinase by dietary lipid is dependent on fatty acid composition. Eur J Biochem. 1995 May 1;229(3):741–748. doi: 10.1111/j.1432-1033.1995.tb20522.x. [DOI] [PubMed] [Google Scholar]
  15. Fuller S. J., Randle P. J. Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal-muscle mitochondria. Effects of starvation and diabetes. Biochem J. 1984 Apr 15;219(2):635–646. doi: 10.1042/bj2190635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gibala M. J., Young M. E., Taegtmeyer H. Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle. Acta Physiol Scand. 2000 Apr;168(4):657–665. doi: 10.1046/j.1365-201x.2000.00717.x. [DOI] [PubMed] [Google Scholar]
  17. Girard J., Ferré P., Pégorier J. P., Duée P. H. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992 Apr;72(2):507–562. doi: 10.1152/physrev.1992.72.2.507. [DOI] [PubMed] [Google Scholar]
  18. Holness M. J., Liu Y. L., Sugden M. C. Time courses of the responses of pyruvate dehydrogenase activities to short-term starvation in diaphragm and selected skeletal muscles of the rat. Biochem J. 1989 Dec 15;264(3):771–776. doi: 10.1042/bj2640771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holness M. J., Sugden M. C. Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition. Biochem J. 1990 Aug 15;270(1):245–249. doi: 10.1042/bj2700245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holness M. J., Sugden M. C. Pyruvate dehydrogenase activities during the fed-to-starved transition and on re-feeding after acute or prolonged starvation. Biochem J. 1989 Mar 1;258(2):529–533. doi: 10.1042/bj2580529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hutson N. J., Randle P. J. Enhanced activity of pyruvate dehydrogenase kinase in rat heart mitochondria in alloxan-diabetes or starvation. FEBS Lett. 1978 Aug 1;92(1):73–76. doi: 10.1016/0014-5793(78)80724-8. [DOI] [PubMed] [Google Scholar]
  22. Kerbey A. L., Radcliffe P. M., Randle P. J. Diabetes and the control of pyruvate dehydrogenase in rat heart mitochondria by concentration ratios of adenosine triphosphate/adenosine diphosphate, of reduced/oxidized nicotinamide-adenine dinucleotide and of acetyl-coenzyme A/coenzyme A. Biochem J. 1977 Jun 15;164(3):509–519. doi: 10.1042/bj1640509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kerbey A. L., Randle P. J., Cooper R. H., Whitehouse S., Pask H. T., Denton R. M. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J. 1976 Feb 15;154(2):327–348. doi: 10.1042/bj1540327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kerbey A. L., Randle P. J. Pyruvate dehydrogenase kinase/activator in rat heart mitochondria, Assay, effect of starvation, and effect of protein-synthesis inhibitors of starvation. Biochem J. 1982 Jul 15;206(1):103–111. doi: 10.1042/bj2060103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kraegen E. W., Sowden J. A., Halstead M. B., Clark P. W., Rodnick K. J., Chisholm D. J., James D. E. Glucose transporters and in vivo glucose uptake in skeletal and cardiac muscle: fasting, insulin stimulation and immunoisolation studies of GLUT1 and GLUT4. Biochem J. 1993 Oct 1;295(Pt 1):287–293. doi: 10.1042/bj2950287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laybutt D. R., Thompson A. L., Cooney G. J., Kraegen E. W. Selective chronic regulation of GLUT1 and GLUT4 content by insulin, glucose, and lipid in rat cardiac muscle in vivo. Am J Physiol. 1997 Sep;273(3 Pt 2):H1309–H1316. doi: 10.1152/ajpheart.1997.273.3.H1309. [DOI] [PubMed] [Google Scholar]
  27. Lyn D., Coore H. G. Pyruvate inhibition of pyruvate dehydrogenase kinase is a physiological variable. Biochem Biophys Res Commun. 1985 Feb 15;126(3):992–998. doi: 10.1016/0006-291x(85)90283-9. [DOI] [PubMed] [Google Scholar]
  28. McGarry J. D., Brown N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1–14. doi: 10.1111/j.1432-1033.1997.00001.x. [DOI] [PubMed] [Google Scholar]
  29. Mueckler M. Family of glucose-transporter genes. Implications for glucose homeostasis and diabetes. Diabetes. 1990 Jan;39(1):6–11. doi: 10.2337/diacare.39.1.6. [DOI] [PubMed] [Google Scholar]
  30. Orfali K. A., Fryer L. G., Holness M. J., Sugden M. C. Interactive effects of insulin and triiodothyronine on pyruvate dehydrogenase kinase activity in cardiac myocytes. J Mol Cell Cardiol. 1995 Mar;27(3):901–908. doi: 10.1016/0022-2828(95)90040-3. [DOI] [PubMed] [Google Scholar]
  31. Patel M. S., Roche T. E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990 Nov;4(14):3224–3233. doi: 10.1096/fasebj.4.14.2227213. [DOI] [PubMed] [Google Scholar]
  32. Postic C., Leturque A., Printz R. L., Maulard P., Loizeau M., Granner D. K., Girard J. Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol. 1994 Apr;266(4 Pt 1):E548–E559. doi: 10.1152/ajpendo.1994.266.4.E548. [DOI] [PubMed] [Google Scholar]
  33. Priestman D. A., Donald E., Holness M. J., Sugden M. C. Different mechanisms underlie the long-term regulation of pyruvate dehydrogenase kinase (PDHK) by tri-iodothyronine in heart and liver. FEBS Lett. 1997 Dec 8;419(1):55–57. doi: 10.1016/s0014-5793(97)01430-0. [DOI] [PubMed] [Google Scholar]
  34. Priestman D. A., Orfali K. A., Sugden M. C. Pyruvate inhibition of pyruvate dehydrogenase kinase. Effects of progressive starvation and hyperthyroidism in vivo, and of dibutyryl cyclic AMP and fatty acids in cultured cardiac myocytes. FEBS Lett. 1996 Sep 16;393(2-3):174–178. doi: 10.1016/0014-5793(96)00877-0. [DOI] [PubMed] [Google Scholar]
  35. Rybin V., Steinberg S. F. Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes. Circ Res. 1996 Sep;79(3):388–398. doi: 10.1161/01.res.79.3.388. [DOI] [PubMed] [Google Scholar]
  36. Santalucía T., Camps M., Castelló A., Muñoz P., Nuel A., Testar X., Palacin M., Zorzano A. Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology. 1992 Feb;130(2):837–846. doi: 10.1210/endo.130.2.1370797. [DOI] [PubMed] [Google Scholar]
  37. Studelska D. R., Campbell C., Pang S., Rodnick K. J., James D. E. Developmental expression of insulin-regulatable glucose transporter GLUT-4. Am J Physiol. 1992 Jul;263(1 Pt 1):E102–E106. doi: 10.1152/ajpendo.1992.263.1.E102. [DOI] [PubMed] [Google Scholar]
  38. Sugden M. C., Fryer L. G., Orfali K. A., Priestman D. A., Donald E., Holness M. J. Studies of the long-term regulation of hepatic pyruvate dehydrogenase kinase. Biochem J. 1998 Jan 1;329(Pt 1):89–94. doi: 10.1042/bj3290089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sugden M. C., Holness M. J. Interactive regulation of the pyruvate dehydrogenase complex and the carnitine palmitoyltransferase system. FASEB J. 1994 Jan;8(1):54–61. doi: 10.1096/fasebj.8.1.8299890. [DOI] [PubMed] [Google Scholar]
  40. Sugden M. C., Holness M. J., Liu Y. L., Smith D. M., Fryer L. G., Kruszynska Y. T. Mechanisms regulating cardiac fuel selection in hyperthyroidism. Biochem J. 1992 Sep 1;286(Pt 2):513–517. doi: 10.1042/bj2860513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sugden M. C., Orfali K. A., Fryer L. G., Holness M. J., Priestman D. A. Molecular mechanisms underlying the long-term impact of dietary fat to increase cardiac pyruvate dehydrogenase kinase: regulation by insulin, cyclic AMP and pyruvate. J Mol Cell Cardiol. 1997 Jul;29(7):1867–1875. doi: 10.1006/jmcc.1997.0425. [DOI] [PubMed] [Google Scholar]
  42. Sugden M. C., Priestman D. A., Orfali K. A., Holness M. J. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes. Horm Metab Res. 1999 May;31(5):300–306. doi: 10.1055/s-2007-978741. [DOI] [PubMed] [Google Scholar]
  43. Taegtmeyer H. Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol. 1994 Feb;19(2):59–113. doi: 10.1016/0146-2806(94)90008-6. [DOI] [PubMed] [Google Scholar]
  44. Taegtmeyer H., Overturf M. L. Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension. 1988 May;11(5):416–426. doi: 10.1161/01.hyp.11.5.416. [DOI] [PubMed] [Google Scholar]
  45. Van Der Lee K. A., Willemsen P. H., Van Der Vusse G. J., Van Bilsen M. Effects of fatty acids on uncoupling protein-2 expression in the rat heart. FASEB J. 2000 Mar;14(3):495–502. doi: 10.1096/fasebj.14.3.495. [DOI] [PubMed] [Google Scholar]
  46. Vigouroux E. Dynamic study of post-natal thyroid function in the rat. Acta Endocrinol (Copenh) 1976 Dec;83(4):752–762. doi: 10.1530/acta.0.0830752. [DOI] [PubMed] [Google Scholar]
  47. Weinstein S. P., Haber R. S. Differential regulation of glucose transporter isoforms by thyroid hormone in rat heart. Biochim Biophys Acta. 1992 Sep 9;1136(3):302–308. doi: 10.1016/0167-4889(92)90121-q. [DOI] [PubMed] [Google Scholar]
  48. Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wittels B., Bressler R. Lipid metabolism in the newborn heart. J Clin Invest. 1965 Oct;44(10):1639–1646. doi: 10.1172/JCI105270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wu P., Sato J., Zhao Y., Jaskiewicz J., Popov K. M., Harris R. A. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J. 1998 Jan 1;329(Pt 1):197–201. doi: 10.1042/bj3290197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zammit V. A. The malonyl-CoA-long-chain acyl-CoA axis in the maintenance of mammalian cell function. Biochem J. 1999 Nov 1;343(Pt 3):505–515. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES