Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 15;352(Pt 3):755–761.

Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity.

S R Wilkinson 1, D J Meyer 1, J M Kelly 1
PMCID: PMC1221514  PMID: 11104683

Abstract

In most eukaryotes, glutathione-dependent peroxidases play a key role in the metabolism of peroxides. Numerous studies have reported that trypanosomatids lack this activity. Here we show that this is not the case, at least for the American trypanosome Trypanosoma cruzi. We have isolated a single-copy gene from T. cruzi with the potential to encode an 18 kDa enzyme, the sequence of which has highest similarity with glutathione peroxidases from plants. A recombinant form of the protein was purified following expression in Escherichia coli. The enzyme was shown to have peroxidase activity in the presence of glutathione/glutathione reductase but not in the presence of trypanothione/trypanothione reductase. It could metabolize a wide range of hydroperoxides (linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide>cumene hydroperoxide>t-butyl hydroperoxide), but no activity towards hydrogen peroxide was detected. Enzyme activity could be saturated by glutathione when both fatty acid and short-chain organic hydroperoxides were used as substrate. For linoleic acid hydroperoxide, the rate-limiting step of this reaction is the reduction of the peroxidase by glutathione. With lower-affinity substrates such as t-butyl hydroperoxide, the rate-limiting step is the reduction of the oxidant. The data presented here identify a new arm of the T. cruzi oxidative defence system.

Full Text

The Full Text of this article is available as a PDF (182.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boveris A., Sies H., Martino E. E., Docampo R., Turrens J. F., Stoppani A. O. Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochem J. 1980 Jun 15;188(3):643–648. doi: 10.1042/bj1880643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med. 1999 Nov;27(9-10):951–965. doi: 10.1016/s0891-5849(99)00173-2. [DOI] [PubMed] [Google Scholar]
  3. Carnieri E. G., Moreno S. N., Docampo R. Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages. Mol Biochem Parasitol. 1993 Sep;61(1):79–86. doi: 10.1016/0166-6851(93)90160-y. [DOI] [PubMed] [Google Scholar]
  4. Clark D., Albrecht M., Arévalo J. Ascorbate variations and dehydroascorbate reductase activity in Trypanosoma cruzi epimastigotes and trypomastigotes. Mol Biochem Parasitol. 1994 Jul;66(1):143–145. doi: 10.1016/0166-6851(94)90045-0. [DOI] [PubMed] [Google Scholar]
  5. Conz P. A., Bevilacqua P. A., La Greca G., Danieli D., Rodighiero M. P., Cavarretta L., Maiorino M., Roveri A., Ursini F. Phospholipid hydroperoxide glutathione peroxidase in the normal human kidney: a possible role in protecting cell membranes. Exp Nephrol. 1993 Nov-Dec;1(6):376–378. [PubMed] [Google Scholar]
  6. Docampo R. Sensitivity of parasites to free radical damage by antiparasitic drugs. Chem Biol Interact. 1990;73(1):1–27. doi: 10.1016/0009-2797(90)90106-w. [DOI] [PubMed] [Google Scholar]
  7. Fairlamb A. H., Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. [DOI] [PubMed] [Google Scholar]
  8. Fairlamb A. H., Henderson G. B., Cerami A. The biosynthesis of trypanothione and N1-glutathionylspermidine in Crithidia fasciculata. Mol Biochem Parasitol. 1986 Dec;21(3):247–257. doi: 10.1016/0166-6851(86)90130-1. [DOI] [PubMed] [Google Scholar]
  9. Flohé L., Brand I. Kinetics of glutathione peroxidase. Biochim Biophys Acta. 1969;191(3):541–549. doi: 10.1016/0005-2744(69)90347-7. [DOI] [PubMed] [Google Scholar]
  10. Flohé L., Hecht H. J., Steinert P. Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med. 1999 Nov;27(9-10):966–984. doi: 10.1016/s0891-5849(99)00172-0. [DOI] [PubMed] [Google Scholar]
  11. Giulivi C., Turrens J. F., Boveris A. Chemiluminescence enhancement by trypanocidal drugs and by inhibitors of antioxidant enzymes in Trypanosoma cruzi. Mol Biochem Parasitol. 1988 Sep;30(3):243–251. doi: 10.1016/0166-6851(88)90093-x. [DOI] [PubMed] [Google Scholar]
  12. Gommel D. U., Nogoceke E., Morr M., Kiess M., Kalisz H. M., Flohé L. Catalytic characteristics of tryparedoxin. Eur J Biochem. 1997 Sep 15;248(3):913–918. doi: 10.1111/j.1432-1033.1997.t01-1-00913.x. [DOI] [PubMed] [Google Scholar]
  13. Huang H. S., Chen C. J., Lu H. S., Chang W. C. Identification of a lipoxygenase inhibitor in A431 cells as a phospholipid hydroperoxide glutathione peroxidase. FEBS Lett. 1998 Mar 6;424(1-2):22–26. doi: 10.1016/s0014-5793(98)00130-6. [DOI] [PubMed] [Google Scholar]
  14. Imai H., Sumi D., Sakamoto H., Hanamoto A., Arai M., Chiba N., Nakagawa Y. Overexpression of phospholipid hydroperoxide glutathione peroxidase suppressed cell death due to oxidative damage in rat basophile leukemia cells (RBL-2H3). Biochem Biophys Res Commun. 1996 May 15;222(2):432–438. doi: 10.1006/bbrc.1996.0762. [DOI] [PubMed] [Google Scholar]
  15. Kelly J. M., Taylor M. C., Smith K., Hunter K. J., Fairlamb A. H. Phenotype of recombinant Leishmania donovani and Trypanosoma cruzi which over-express trypanothione reductase. Sensitivity towards agents that are thought to induce oxidative stress. Eur J Biochem. 1993 Nov 15;218(1):29–37. doi: 10.1111/j.1432-1033.1993.tb18348.x. [DOI] [PubMed] [Google Scholar]
  16. Krauth-Siegel R. L., Lüdemann H. Reduction of dehydroascorbate by trypanothione. Mol Biochem Parasitol. 1996 Oct 1;80(2):203–208. doi: 10.1016/0166-6851(96)02689-8. [DOI] [PubMed] [Google Scholar]
  17. Lopez J. A., Carvalho T. U., de Souza W., Flohé L., Guerrero S. A., Montemartini M., Kalisz H. M., Nogoceke E., Singh M., Alves M. J. Evidence for a trypanothione-dependent peroxidase system in Trypanosoma cruzi. Free Radic Biol Med. 2000 Mar 1;28(5):767–772. doi: 10.1016/s0891-5849(00)00159-3. [DOI] [PubMed] [Google Scholar]
  18. Maiorino M., Aumann K. D., Brigelius-Flohé R., Doria D., van den Heuvel J., McCarthy J., Roveri A., Ursini F., Flohé L. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol Chem Hoppe Seyler. 1995 Nov;376(11):651–660. doi: 10.1515/bchm3.1995.376.11.651. [DOI] [PubMed] [Google Scholar]
  19. Maiorino M., Gregolin C., Ursini F. Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol. 1990;186:448–457. doi: 10.1016/0076-6879(90)86139-m. [DOI] [PubMed] [Google Scholar]
  20. Mehlotra R. K. Antioxidant defense mechanisms in parasitic protozoa. Crit Rev Microbiol. 1996;22(4):295–314. doi: 10.3109/10408419609105484. [DOI] [PubMed] [Google Scholar]
  21. Montemartini M., Nogoceke E., Singh M., Steinert P., Flohé L., Kalisz H. M. Sequence analysis of the tryparedoxin peroxidase gene from Crithidia fasciculata and its functional expression in Escherichia coli. J Biol Chem. 1998 Feb 27;273(9):4864–4871. doi: 10.1074/jbc.273.9.4864. [DOI] [PubMed] [Google Scholar]
  22. Moutiez M., Aumercier M., Schöneck R., Meziane-Cherif D., Lucas V., Aumercier P., Ouaissi A., Sergheraert C., Tartar A. Purification and characterization of a trypanothione-glutathione thioltransferase from Trypanosoma cruzi. Biochem J. 1995 Sep 1;310(Pt 2):433–437. doi: 10.1042/bj3100433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moutiez M., Quéméneur E., Sergheraert C., Lucas V., Tartar A., Davioud-Charvet E. Glutathione-dependent activities of Trypanosoma cruzi p52 makes it a new member of the thiol:disulphide oxidoreductase family. Biochem J. 1997 Feb 15;322(Pt 1):43–48. doi: 10.1042/bj3220043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nogoceke E., Gommel D. U., Kiess M., Kalisz H. M., Flohé L. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol Chem. 1997 Aug;378(8):827–836. doi: 10.1515/bchm.1997.378.8.827. [DOI] [PubMed] [Google Scholar]
  25. Reckenfelderbäumer N., Lüdemann H., Schmidt H., Steverding D., Krauth-Siegel R. L. Identification and functional characterization of thioredoxin from Trypanosoma brucei brucei. J Biol Chem. 2000 Mar 17;275(11):7547–7552. doi: 10.1074/jbc.275.11.7547. [DOI] [PubMed] [Google Scholar]
  26. Rocher C., Lalanne J. L., Chaudière J. Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase. Eur J Biochem. 1992 May 1;205(3):955–960. doi: 10.1111/j.1432-1033.1992.tb16862.x. [DOI] [PubMed] [Google Scholar]
  27. Salazar N. A., Mondragon A., Kelly J. M. Mucin-like glycoprotein genes are closely linked to members of the trans-sialidase super-family at multiple sites in the Trypanosoma cruzi genome. Mol Biochem Parasitol. 1996 Jun;78(1-2):127–136. doi: 10.1016/s0166-6851(96)02617-5. [DOI] [PubMed] [Google Scholar]
  28. Takahashi K., Avissar N., Whitin J., Cohen H. Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Arch Biochem Biophys. 1987 Aug 1;256(2):677–686. doi: 10.1016/0003-9861(87)90624-2. [DOI] [PubMed] [Google Scholar]
  29. Tang L., Gounaris K., Griffiths C., Selkirk M. E. Heterologous expression and enzymatic properties of a selenium-independent glutathione peroxidase from the parasitic nematode Brugia pahangi. J Biol Chem. 1995 Aug 4;270(31):18313–18318. doi: 10.1074/jbc.270.31.18313. [DOI] [PubMed] [Google Scholar]
  30. Tetaud E., Fairlamb A. H. Cloning, expression and reconstitution of the trypanothione-dependent peroxidase system of Crithidia fasciculata. Mol Biochem Parasitol. 1998 Oct 30;96(1-2):111–123. doi: 10.1016/s0166-6851(98)00120-0. [DOI] [PubMed] [Google Scholar]
  31. Ursini F., Bindoli A. The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids. 1987 Jul-Sep;44(2-4):255–276. doi: 10.1016/0009-3084(87)90053-3. [DOI] [PubMed] [Google Scholar]
  32. Ursini F., Maiorino M., Brigelius-Flohé R., Aumann K. D., Roveri A., Schomburg D., Flohé L. Diversity of glutathione peroxidases. Methods Enzymol. 1995;252:38–53. doi: 10.1016/0076-6879(95)52007-4. [DOI] [PubMed] [Google Scholar]
  33. Ursini F., Maiorino M., Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta. 1985 Mar 29;839(1):62–70. doi: 10.1016/0304-4165(85)90182-5. [DOI] [PubMed] [Google Scholar]
  34. Ursini F., Maiorino M., Roveri A. Phospholipid hydroperoxide glutathione peroxidase (PHGPx): more than an antioxidant enzyme? Biomed Environ Sci. 1997 Sep;10(2-3):327–332. [PubMed] [Google Scholar]
  35. Viodé C., Bettache N., Cenas N., Krauth-Siegel R. L., Chauvière G., Bakalara N., Périé J. Enzymatic reduction studies of nitroheterocycles. Biochem Pharmacol. 1999 Mar 1;57(5):549–557. doi: 10.1016/s0006-2952(98)00324-4. [DOI] [PubMed] [Google Scholar]
  36. Wilkinson S. R., Temperton N. J., Mondragon A., Kelly J. M. Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. J Biol Chem. 2000 Mar 17;275(11):8220–8225. doi: 10.1074/jbc.275.11.8220. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES