Abstract
In a previous paper [Lim, Park, Jee, Lee and Paik (1999) J. Cancer Res. Clin. Oncol. 125, 493-499], we showed two major forms of active DNA-6-O-methylguanine:protein-L-cysteine S-methyltransferase (MGMT; EC 2.1.1.63) in the liver with N-nitrosodiethylamine (DEN)-induced carcinogenesis: these were 26 and 24 kDa species. Here we show that a 2 kDa C-terminal fragment was cleaved from the 26 kDa species in vitro by thrombin or microsomal fractions isolated from DEN-treated rat livers. When Ser(204) of the 26 kDa protein was replaced with Ala by site-directed mutagenesis, phosphorylation of the protein was completely abolished, indicating Ser(204) to be the site of phosphorylation. We also show that the phosphorylation was performed by Ca(2+)-independent protein kinase isoenzymes, and that the phosphorylated rat MGMT protein was resistant to digestion by protease(s) whose activity was increased during DEN-induced hepatocarcinogenesis and also by digestion with endopeptidase Glu-C (V8 protease).
Full Text
The Full Text of this article is available as a PDF (234.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrows L. R., Magee P. N. Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro. Carcinogenesis. 1982;3(3):349–351. doi: 10.1093/carcin/3.3.349. [DOI] [PubMed] [Google Scholar]
- Braun S., Abdel Ghany M., Lettieri J. A., Racker E. Partial purification and characterization of protein tyrosine kinases from normal tissues. Arch Biochem Biophys. 1986 Jun;247(2):424–432. doi: 10.1016/0003-9861(86)90602-8. [DOI] [PubMed] [Google Scholar]
- Domoradzki J., Pegg A. E., Dolan M. E., Maher V. M., McCormick J. J. Correlation between O6-methylguanine-DNA-methyltransferase activity and resistance of human cells to the cytotoxic and mutagenic effect of N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis. 1984 Dec;5(12):1641–1647. doi: 10.1093/carcin/5.12.1641. [DOI] [PubMed] [Google Scholar]
- Elberg G., Li J., Leibovitch A., Shechter Y. Non-receptor cytosolic protein tyrosine kinases from various rat tissues. Biochim Biophys Acta. 1995 Nov 30;1269(3):299–306. doi: 10.1016/0167-4889(95)00124-8. [DOI] [PubMed] [Google Scholar]
- Elder R. H., Tumelty J., Douglas K. T., Margison G. P., Rafferty J. A. C-terminally truncated human O6-alkylguanine-DNA alkyltransferase retains activity. Biochem J. 1992 Aug 1;285(Pt 3):707–709. doi: 10.1042/bj2850707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enomoto K., Kaneko A., Oyamada M., Oyamada Y., Dempo K., Mori M. Induction of a novel Ca2+-dependent serine protease in rat liver treated with various promoters of liver carcinogenesis. Toxicol Pathol. 1987;15(1):73–77. doi: 10.1177/019262338701500109. [DOI] [PubMed] [Google Scholar]
- Federwisch M., Hassiepen U., Bender K., Rajewsky M. F., Wollmer A. Recombinant human O6-alkylguanine-DNA alkyltransferase induces conformational change in bound DNA. FEBS Lett. 1997 May 5;407(3):333–336. doi: 10.1016/s0014-5793(97)00370-0. [DOI] [PubMed] [Google Scholar]
- Foote R. S., Mitra S., Pal B. C. Demethylation of O6-methylguanine in a synthetic DNA polymer by an inducible activity in Escherichia coli. Biochem Biophys Res Commun. 1980 Nov 28;97(2):654–659. doi: 10.1016/0006-291x(80)90314-9. [DOI] [PubMed] [Google Scholar]
- Fried M. G., Kanugula S., Bromberg J. L., Pegg A. E. DNA binding mechanism of O6-alkylguanine-DNA alkyltransferase: stoichiometry and effects of DNA base composition and secondary structure on complex stability. Biochemistry. 1996 Dec 3;35(48):15295–15301. doi: 10.1021/bi960971k. [DOI] [PubMed] [Google Scholar]
- Frosina G., Laval F. The O6-methylguanine-DNA-methyltransferase activity of rat hepatoma cells is increased after a single exposure to alkylating agents. Carcinogenesis. 1987 Jan;8(1):91–95. doi: 10.1093/carcin/8.1.91. [DOI] [PubMed] [Google Scholar]
- Guttenplan J. B. Mutagenesis and O6-ethylguanine levels in DNA from N-nitroso-N-ethylurea-treated Salmonella typhimurium: evidence for a high mutational efficiency of O6-ethylguanine. Carcinogenesis. 1984 Feb;5(2):155–159. doi: 10.1093/carcin/5.2.155. [DOI] [PubMed] [Google Scholar]
- Hardin S. C., Wolniak S. M. Low-voltage separation of phosphoamino acids by silica gel thin-layer electrophoresis in a DNA electrophoresis cell. Biotechniques. 1998 Mar;24(3):344–346. doi: 10.2144/98243bm01. [DOI] [PubMed] [Google Scholar]
- Hayakawa H., Koike G., Sekiguchi M. Expression and cloning of complementary DNA for a human enzyme that repairs O6-methylguanine in DNA. J Mol Biol. 1990 Jun 20;213(4):739–747. doi: 10.1016/S0022-2836(05)80260-8. [DOI] [PubMed] [Google Scholar]
- Hazra T. K., Roy R., Biswas T., Grabowski D. T., Pegg A. E., Mitra S. Specific recognition of O6-methylguanine in DNA by active site mutants of human O6-methylguanine-DNA methyltransferase. Biochemistry. 1997 May 13;36(19):5769–5776. doi: 10.1021/bi963085i. [DOI] [PubMed] [Google Scholar]
- Hubbard S. J., Campbell S. F., Thornton J. M. Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J Mol Biol. 1991 Jul 20;220(2):507–530. doi: 10.1016/0022-2836(91)90027-4. [DOI] [PubMed] [Google Scholar]
- Hug H., Sarre T. F. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993 Apr 15;291(Pt 2):329–343. doi: 10.1042/bj2910329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iyama A., Sakumi K., Nakabeppu Y., Sekiguchi M. A unique structural feature of rabbit DNA repair methyltransferase as revealed by cDNA cloning. Carcinogenesis. 1994 Apr;15(4):627–633. doi: 10.1093/carcin/15.4.627. [DOI] [PubMed] [Google Scholar]
- Kaina B., Ziouta A., Ochs K., Coquerelle T. Chromosomal instability, reproductive cell death and apoptosis induced by O6-methylguanine in Mex-, Mex+ and methylation-tolerant mismatch repair compromised cells: facts and models. Mutat Res. 1997 Nov 28;381(2):227–241. doi: 10.1016/s0027-5107(97)00187-5. [DOI] [PubMed] [Google Scholar]
- Kanugula S., Goodtzova K., Pegg A. E. Probing of conformational changes in human O6-alkylguanine-DNA alkyl transferase protein in its alkylated and DNA-bound states by limited proteolysis. Biochem J. 1998 Feb 1;329(Pt 3):545–550. doi: 10.1042/bj3290545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishimoto A., Nishiyama K., Nakanishi H., Uratsuji Y., Nomura H., Takeyama Y., Nishizuka Y. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1985 Oct 15;260(23):12492–12499. [PubMed] [Google Scholar]
- Kobayashi T., Nakamura S., Yamamura H. Cytosolic protein-tyrosine kinase activities in various rat tissues. Ann Clin Biochem. 1989 Mar;26(Pt 2):164–168. doi: 10.1177/000456328902600213. [DOI] [PubMed] [Google Scholar]
- Lim I. K., Park T. J., Jee J. W., Lee M. S., Paik W. K. Differential expression of O6-methylguanine-DNA methyltransferase during diethylnitrosamine-induced carcinogenesis and liver regeneration in Sprague-Dawley male rats. J Cancer Res Clin Oncol. 1999 Aug-Sep;125(8-9):493–499. doi: 10.1007/s004320050307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim K., Kim Y. J., Kim S., Paik W. K. Pronase-based assay method for O6-methylguanine-DNA methyltransferase. Anal Biochem. 1996 May 1;236(2):284–289. doi: 10.1006/abio.1996.0168. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Demple B., Robins P. Suicide inactivation of the E. coli O6-methylguanine-DNA methyltransferase. EMBO J. 1982;1(11):1359–1363. doi: 10.1002/j.1460-2075.1982.tb01323.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loechler E. L., Green C. L., Essigmann J. M. In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6271–6275. doi: 10.1073/pnas.81.20.6271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loveless A. Possible relevance of O-6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature. 1969 Jul 12;223(5202):206–207. doi: 10.1038/223206a0. [DOI] [PubMed] [Google Scholar]
- Ludlum D. B. DNA alkylation by the haloethylnitrosoureas: nature of modifications produced and their enzymatic repair or removal. Mutat Res. 1990 Nov-Dec;233(1-2):117–126. doi: 10.1016/0027-5107(90)90156-x. [DOI] [PubMed] [Google Scholar]
- Martiny-Baron G., Kazanietz M. G., Mischak H., Blumberg P. M., Kochs G., Hug H., Marmé D., Schächtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976. J Biol Chem. 1993 May 5;268(13):9194–9197. [PubMed] [Google Scholar]
- Moore M. H., Gulbis J. M., Dodson E. J., Demple B., Moody P. C. Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli. EMBO J. 1994 Apr 1;13(7):1495–1501. doi: 10.1002/j.1460-2075.1994.tb06410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan S. E., Kelley M. R., Pieper R. O. The role of the carboxyl-terminal tail in human O6-methylguanine DNA methyltransferase substrate specificity and temperature sensitivity. J Biol Chem. 1993 Sep 15;268(26):19802–19809. [PubMed] [Google Scholar]
- Nakatsuru Y., Matsukuma S., Nemoto N., Sugano H., Sekiguchi M., Ishikawa T. O6-methylguanine-DNA methyltransferase protects against nitrosamine-induced hepatocarcinogenesis. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6468–6472. doi: 10.1073/pnas.90.14.6468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsson M., Lindahl T. Repair of alkylated DNA in Escherichia coli. Methyl group transfer from O6-methylguanine to a protein cysteine residue. J Biol Chem. 1980 Nov 25;255(22):10569–10571. [PubMed] [Google Scholar]
- Rahden-Staron I., Laval F. cDNA cloning of the rat O6-methylguanine-DNA-methyltransferase. Biochem Biophys Res Commun. 1991 Jun 14;177(2):597–602. doi: 10.1016/0006-291x(91)91830-6. [DOI] [PubMed] [Google Scholar]
- Rydberg B., Spurr N., Karran P. cDNA cloning and chromosomal assignment of the human O6-methylguanine-DNA methyltransferase. cDNA expression in Escherichia coli and gene expression in human cells. J Biol Chem. 1990 Jun 5;265(16):9563–9569. [PubMed] [Google Scholar]
- Saffhill R., Margison G. P., O'Connor P. J. Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta. 1985 Dec 17;823(2):111–145. doi: 10.1016/0304-419x(85)90009-5. [DOI] [PubMed] [Google Scholar]
- Sakumi K., Shiraishi A., Hayakawa H., Sekiguchi M. Cloning and expresion of cDNA for rat O6-methylguanine-DNA methyltransferase. Nucleic Acids Res. 1991 Oct 25;19(20):5597–5601. doi: 10.1093/nar/19.20.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakumi K., Shiraishi A., Shimizu S., Tsuzuki T., Ishikawa T., Sekiguchi M. Methylnitrosourea-induced tumorigenesis in MGMT gene knockout mice. Cancer Res. 1997 Jun 15;57(12):2415–2418. [PubMed] [Google Scholar]
- Shiota S., von Wronski M. A., Tano K., Bigner D. D., Brent T. P., Mitra S. Characterization of cDNA encoding mouse DNA repair protein O6-methylguanine-DNA methyltransferase and high-level expression of the wild-type and mutant proteins in Escherichia coli. Biochemistry. 1992 Feb 25;31(7):1897–1903. doi: 10.1021/bi00122a001. [DOI] [PubMed] [Google Scholar]
- Shiraishi A., Sakumi K., Nakatsu Y., Hayakawa H., Sekiguchi M. Isolation and characterization of cDNA and genomic sequences for mouse O6-methylguanine-DNA methyltransferase. Carcinogenesis. 1992 Feb;13(2):289–296. doi: 10.1093/carcin/13.2.289. [DOI] [PubMed] [Google Scholar]
- Silber J. R., Bobola M. S., Ghatan S., Blank A., Kolstoe D. D., Berger M. S. O6-methylguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics. Cancer Res. 1998 Mar 1;58(5):1068–1073. [PubMed] [Google Scholar]
- Snow E. T., Foote R. S., Mitra S. Base-pairing properties of O6-methylguanine in template DNA during in vitro DNA replication. J Biol Chem. 1984 Jul 10;259(13):8095–8100. [PubMed] [Google Scholar]
- Srivenugopal K. S., Yuan X. H., Friedman H. S., Ali-Osman F. Ubiquitination-dependent proteolysis of O6-methylguanine-DNA methyltransferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochemistry. 1996 Jan 30;35(4):1328–1334. doi: 10.1021/bi9518205. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Sakumi K., Sekiguchi M. Interaction of Ada protein with DNA examined by fluorescence anisotropy of the protein. Biochemistry. 1990 Apr 10;29(14):3431–3436. doi: 10.1021/bi00466a002. [DOI] [PubMed] [Google Scholar]
- Tano K., Shiota S., Collier J., Foote R. S., Mitra S. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci U S A. 1990 Jan;87(2):686–690. doi: 10.1073/pnas.87.2.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wetsel W. C., Khan W. A., Merchenthaler I., Rivera H., Halpern A. E., Phung H. M., Negro-Vilar A., Hannun Y. A. Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol. 1992 Apr;117(1):121–133. doi: 10.1083/jcb.117.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong T. W., Goldberg A. R. Purification and characterization of the major species of tyrosine protein kinase in rat liver. J Biol Chem. 1984 Jul 10;259(13):8505–8512. [PubMed] [Google Scholar]
- Woodgett J. R., Gould K. L., Hunter T. Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur J Biochem. 1986 Nov 17;161(1):177–184. doi: 10.1111/j.1432-1033.1986.tb10139.x. [DOI] [PubMed] [Google Scholar]
- Yarosh D. B. The role of O6-methylguanine-DNA methyltransferase in cell survival, mutagenesis and carcinogenesis. Mutat Res. 1985 Jan-Mar;145(1-2):1–16. doi: 10.1016/0167-8817(85)90034-3. [DOI] [PubMed] [Google Scholar]
- de Vente J., Kiley S., Garris T., Bryant W., Hooker J., Posekany K., Parker P., Cook P., Fletcher D., Ways D. K. Phorbol ester treatment of U937 cells with altered protein kinase C content and distribution induces cell death rather than differentiation. Cell Growth Differ. 1995 Apr;6(4):371–382. [PubMed] [Google Scholar]