Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 15;352(Pt 3):851–857.

Human deoxyhypusine synthase: interrelationship between binding of NAD and substrates.

C H Lee 1, M H Park 1
PMCID: PMC1221526  PMID: 11104695

Abstract

Deoxyhypusine synthase catalyses the NAD-dependent transfer of the butylamine moiety from the polyamine, spermidine, to a specific lysine residue of a single cellular protein, eukaryotic translation-initiation factor 5A (eIF5A) precursor. The native enzyme exists as a tetramer of four identical subunits and contains four binding sites for NAD. The binding of spermidine and NAD was studied by a filtration assay. [(3)H]Spermidine binding to the enzyme was not detectable alone or in the presence of the eIF5A precursor, but was detected only in the presence of NAD or NADH, suggesting that a NAD/NADH-induced conformational change is required for the binding of spermidine. A strong NAD-dependent binding was also observed with a spermidine analogue, N(1)-guanyl-1, 7-diamino[(3)H]heptane (GC(7)), but not with [(14)C]putrescine or [(14)C]spermine. Although [(3)H]NAD binding to the enzyme occurred in the absence of spermidine, its affinity for the enzyme was markedly enhanced by spermidine, GC(7) and also by the eIF5A precursor. The maximum binding for NAD and spermidine was estimated to be approximately 4 molecules each/enzyme tetramer. The dependence of spermidine binding on NAD and the modulation of binding of NAD by spermidine and the eIF5A precursor suggest intricate relationships between the binding of cofactor and the substrates, and provide new insights into the reaction mechanism.

Full Text

The Full Text of this article is available as a PDF (180.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baillon J. G., Mamont P. S., Wagner J., Gerhart F., Lux P. Fluorinated analogues of spermidine as substrates of spermine synthase. Eur J Biochem. 1988 Sep 15;176(2):237–242. doi: 10.1111/j.1432-1033.1988.tb14274.x. [DOI] [PubMed] [Google Scholar]
  2. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruns R. F., Lawson-Wendling K., Pugsley T. A. A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem. 1983 Jul 1;132(1):74–81. doi: 10.1016/0003-2697(83)90427-x. [DOI] [PubMed] [Google Scholar]
  4. Byers T. L., Ganem B., Pegg A. E. Cytostasis induced in L1210 murine leukaemia cells by the S-adenosyl-L-methionine decarboxylase inhibitor 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine may be due to hypusine depletion. Biochem J. 1992 Nov 1;287(Pt 3):717–724. doi: 10.1042/bj2870717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byers T. L., Lakanen J. R., Coward J. K., Pegg A. E. The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by 1-methylspermidine and 1,12-dimethylspermine. Biochem J. 1994 Oct 15;303(Pt 2):363–368. doi: 10.1042/bj3030363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen K. Y., Dou Q. P. NAD+ stimulated the spermidine-dependent hypusine formation on the 18 kDa protein in cytosolic lysates derived from NB-15 mouse neuroblastoma cells. FEBS Lett. 1988 Mar 14;229(2):325–328. doi: 10.1016/0014-5793(88)81149-9. [DOI] [PubMed] [Google Scholar]
  7. Chen K. Y., Liu A. Y. Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol Signals. 1997 May-Jun;6(3):105–109. doi: 10.1159/000109115. [DOI] [PubMed] [Google Scholar]
  8. Eklund H., Brändén C. I. Structural differences between apo- and holoenzyme of horse liver alcohol dehydrogenase. J Biol Chem. 1979 May 10;254(9):3458–3461. [PubMed] [Google Scholar]
  9. Eklund H., Samma J. P., Wallén L., Brändén C. I., Akeson A., Jones T. A. Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 A resolution. J Mol Biol. 1981 Mar 15;146(4):561–587. doi: 10.1016/0022-2836(81)90047-4. [DOI] [PubMed] [Google Scholar]
  10. Gabellieri E., Rahuel-Clermont S., Branlant G., Strambini G. B. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biochemistry. 1996 Sep 24;35(38):12549–12559. doi: 10.1021/bi960231b. [DOI] [PubMed] [Google Scholar]
  11. Hanauske-Abel H. M., Park M. H., Hanauske A. R., Popowicz A. M., Lalande M., Folk J. E. Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. Biochim Biophys Acta. 1994 Mar 31;1221(2):115–124. doi: 10.1016/0167-4889(94)90003-5. [DOI] [PubMed] [Google Scholar]
  12. Jakus J., Wolff E. C., Park M. H., Folk J. E. Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono-guanylated diamines and polyamines. J Biol Chem. 1993 Jun 25;268(18):13151–13159. [PubMed] [Google Scholar]
  13. Joe Y. A., Wolff E. C., Park M. H. Cloning and expression of human deoxyhypusine synthase cDNA. Structure-function studies with the recombinant enzyme and mutant proteins. J Biol Chem. 1995 Sep 22;270(38):22386–22392. doi: 10.1074/jbc.270.38.22386. [DOI] [PubMed] [Google Scholar]
  14. LeBrun L. A., Plapp B. V. Control of coenzyme binding to horse liver alcohol dehydrogenase. Biochemistry. 1999 Sep 21;38(38):12387–12393. doi: 10.1021/bi991306p. [DOI] [PubMed] [Google Scholar]
  15. Lee Y. B., Joe Y. A., Wolff E. C., Dimitriadis E. K., Park M. H. Complex formation between deoxyhypusine synthase and its protein substrate, the eukaryotic translation initiation factor 5A (eIF5A) precursor. Biochem J. 1999 May 15;340(Pt 1):273–281. [PMC free article] [PubMed] [Google Scholar]
  16. Liao D. I., Wolff E. C., Park M. H., Davies D. R. Crystal structure of the NAD complex of human deoxyhypusine synthase: an enzyme with a ball-and-chain mechanism for blocking the active site. Structure. 1998 Jan 15;6(1):23–32. doi: 10.1016/s0969-2126(98)00004-5. [DOI] [PubMed] [Google Scholar]
  17. Liu Y., Vanhooke J. L., Frey P. A. UDP-galactose 4-epimerase: NAD+ content and a charge-transfer band associated with the substrate-induced conformational transition. Biochemistry. 1996 Jun 11;35(23):7615–7620. doi: 10.1021/bi960102v. [DOI] [PubMed] [Google Scholar]
  18. Murphey R. J., Gerner E. W. Hypusine formation in protein by a two-step process in cell lysates. J Biol Chem. 1987 Nov 5;262(31):15033–15036. [PubMed] [Google Scholar]
  19. Park M. H., Joe Y. A., Kang K. R. Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae. J Biol Chem. 1998 Jan 16;273(3):1677–1683. doi: 10.1074/jbc.273.3.1677. [DOI] [PubMed] [Google Scholar]
  20. Park M. H., Lee Y. B., Joe Y. A. Hypusine is essential for eukaryotic cell proliferation. Biol Signals. 1997 May-Jun;6(3):115–123. doi: 10.1159/000109117. [DOI] [PubMed] [Google Scholar]
  21. Park M. H., Wolff E. C. Cell-free synthesis of deoxyhypusine. Separation of protein substrate and enzyme and identification of 1,3-diaminopropane as a product of spermidine cleavage. J Biol Chem. 1988 Oct 25;263(30):15264–15269. [PubMed] [Google Scholar]
  22. Park M. H., Wolff E. C., Folk J. E. Is hypusine essential for eukaryotic cell proliferation? Trends Biochem Sci. 1993 Dec;18(12):475–479. doi: 10.1016/0968-0004(93)90010-k. [DOI] [PubMed] [Google Scholar]
  23. Park M. H., Wolff E. C., Lee Y. B., Folk J. E. Antiproliferative effects of inhibitors of deoxyhypusine synthase. Inhibition of growth of Chinese hamster ovary cells by guanyl diamines. J Biol Chem. 1994 Nov 11;269(45):27827–27832. [PubMed] [Google Scholar]
  24. Ramaswamy S., Eklund H., Plapp B. V. Structures of horse liver alcohol dehydrogenase complexed with NAD+ and substituted benzyl alcohols. Biochemistry. 1994 May 3;33(17):5230–5237. doi: 10.1021/bi00183a028. [DOI] [PubMed] [Google Scholar]
  25. Sasaki K., Abid M. R., Miyazaki M. Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett. 1996 Apr 15;384(2):151–154. doi: 10.1016/0014-5793(96)00310-9. [DOI] [PubMed] [Google Scholar]
  26. Scheek R. M., Slater E. C. Preparation and properties of rabbit-muscle glyceraldehyde-phosphate dehydrogenase with equal binding parameters for the third and fourth NAD+ molecules. Biochim Biophys Acta. 1978 Sep 11;526(1):13–24. doi: 10.1016/0005-2744(78)90285-1. [DOI] [PubMed] [Google Scholar]
  27. Schliebs R., Rothe T., Bigl V. Radioligand-Bindungsmessungen an beta-adrenergen und Benzodiazepin-Rezeptoren in der Hirnrinde der Ratte. Vergleich von Filtrations- und Zentrifugationstechnik. Biomed Biochim Acta. 1983;42(5):537–546. [PubMed] [Google Scholar]
  28. Schnier J., Schwelberger H. G., Smit-McBride Z., Kang H. A., Hershey J. W. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jun;11(6):3105–3114. doi: 10.1128/mcb.11.6.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smit-McBride Z., Schnier J., Kaufman R. J., Hershey J. W. Protein synthesis initiation factor eIF-4D. Functional comparison of native and unhypusinated forms of the protein. J Biol Chem. 1989 Nov 5;264(31):18527–18530. [PubMed] [Google Scholar]
  30. Tanaka Y., Miyake R., Kikkawa U., Nishizuka Y. Rapid assay of binding of tumor-promoting phorbol esters to protein kinase C1. J Biochem. 1986 Jan;99(1):257–261. doi: 10.1093/oxfordjournals.jbchem.a135467. [DOI] [PubMed] [Google Scholar]
  31. Wolff E. C., Folk J. E., Park M. H. Enzyme-substrate intermediate formation at lysine 329 of human deoxyhypusine synthase. J Biol Chem. 1997 Jun 20;272(25):15865–15871. doi: 10.1074/jbc.272.25.15865. [DOI] [PubMed] [Google Scholar]
  32. Wolff E. C., Lee Y. B., Chung S. I., Folk J. E., Park M. H. Deoxyhypusine synthase from rat testis: purification and characterization. J Biol Chem. 1995 Apr 14;270(15):8660–8666. doi: 10.1074/jbc.270.15.8660. [DOI] [PubMed] [Google Scholar]
  33. Wolff E. C., Park M. H., Folk J. E. Cleavage of spermidine as the first step in deoxyhypusine synthesis. The role of NAD. J Biol Chem. 1990 Mar 25;265(9):4793–4799. [PubMed] [Google Scholar]
  34. Wolff E. C., Wolff J., Park M. H. Deoxyhypusine synthase generates and uses bound NADH in a transient hydride transfer mechanism. J Biol Chem. 2000 Mar 31;275(13):9170–9177. doi: 10.1074/jbc.275.13.9170. [DOI] [PubMed] [Google Scholar]
  35. Wöhl T., Klier H., Ammer H., Lottspeich F., Magdolen V. The HYP2 gene of Saccharomyces cerevisiae is essential for aerobic growth: characterization of different isoforms of the hypusine-containing protein Hyp2p and analysis of gene disruption mutants. Mol Gen Genet. 1993 Nov;241(3-4):305–311. doi: 10.1007/BF00284682. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES