Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 15;352(Pt 3):875–882.

Purification and characterization of cytosolic pyruvate kinase from banana fruit.

W L Turner 1, W C Plaxton 1
PMCID: PMC1221529  PMID: 11104698

Abstract

Cytosolic pyruvate kinase (PK(c)) from ripened banana (Musa cavendishii L.) fruits has been purified 543-fold to electrophoretic homogeneity and a final specific activity of 59.7 micromol of pyruvate produced/min per mg of protein. SDS/PAGE and gel-filtration FPLC of the final preparation indicated that this enzyme exists as a 240 kDa homotetramer composed of subunits of 57 kDa. Although the enzyme displayed a pH optimum of 6.9, optimal efficiency in substrate utilization [in terms of V(max)/K(m) for phosphoenolpyruvate (PEP) or ADP] was equivalent at pH 6.9 and 7.5. PK(c) activity was absolutely dependent upon the presence of a bivalent and a univalent cation, with Mg(2+) and K(+) respectively fulfilling this requirement. Hyperbolic saturation kinetics were observed for the binding of PEP, ADP, Mg(2+) and K(+) (K(m) values of 0.098, 0.12, 0.27 and 0.91 mM respectively). Although the enzyme utilized UDP, IDP, GDP and CDP as alternative nucleotides, ADP was the preferred substrate. L-Glutamate and MgATP were the most effective inhibitors, whereas L-aspartate functioned as an activator by reversing the inhibition of PK(c) by L-glutamate. The allosteric features of banana PK(c) are compared with those of banana PEP carboxylase [Law and Plaxton (1995) Biochem. J. 307, 807-816]. A model is presented which highlights the roles of cytosolic pH, MgATP, L-glutamate and L-aspartate in the co-ordinate control of the PEP branchpoint in ripening bananas.

Full Text

The Full Text of this article is available as a PDF (151.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball K. L., Green J. H., ap Rees T. Glycolysis at the climacteric of bananas. Eur J Biochem. 1991 Apr 10;197(1):265–269. doi: 10.1111/j.1432-1033.1991.tb15907.x. [DOI] [PubMed] [Google Scholar]
  2. Baysdorfer C., Bassham J. A. Spinach pyruvate kinase isoforms : partial purification and regulatory properties. Plant Physiol. 1984 Feb;74(2):374–379. doi: 10.1104/pp.74.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaudry R. M., Severson R. F., Black C. C., Kays S. J. Banana ripening: implications of changes in glycolytic intermediate concentrations, glycolytic and gluconeogenic carbon flux, and fructose 2,6-bisphosphate concentration. Plant Physiol. 1989 Dec;91(4):1436–1444. doi: 10.1104/pp.91.4.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brooks S. P. A program for analyzing enzyme rate data obtained from a microplate reader. Biotechniques. 1994 Dec;17(6):1154–1161. [PubMed] [Google Scholar]
  6. Chollet Raymond, Vidal Jean, O'Leary Marion H. PHOSPHOENOLPYRUVATE CARBOXYLASE: A Ubiquitous, Highly Regulated Enzyme in Plants. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):273–298. doi: 10.1146/annurev.arplant.47.1.273. [DOI] [PubMed] [Google Scholar]
  7. Clendennen S. K., May G. D. Differential gene expression in ripening banana fruit. Plant Physiol. 1997 Oct;115(2):463–469. doi: 10.1104/pp.115.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dabrowska A., Terlecki G., Czapińska E., Gutowicz J. Interaction of bovine heart pyruvate kinase with phospholipids. Biochim Biophys Acta. 1995 Jun 14;1236(2):299–305. doi: 10.1016/0005-2736(95)00061-7. [DOI] [PubMed] [Google Scholar]
  9. Dominguez-Puigjaner E., Vendrell M., Ludevid M. D. Differential Protein Accumulation in Banana Fruit during Ripening. Plant Physiol. 1992 Jan;98(1):157–162. doi: 10.1104/pp.98.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edwards S, Nguyen BT, Do B, Roberts JKM. Contribution of malic enzyme, pyruvate kinase, phosphoenolpyruvate carboxylase, and the krebs cycle to respiration and biosynthesis and to intracellular pH regulation during hypoxia in maize root tips observed by nuclear magnetic resonance imaging and gas chromatography-mass spectrometry . Plant Physiol. 1998 Mar;116(3):1073–1081. doi: 10.1104/pp.116.3.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hill H. D., Straka J. G. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem. 1988 Apr;170(1):203–208. doi: 10.1016/0003-2697(88)90109-1. [DOI] [PubMed] [Google Scholar]
  12. Hu Z., Plaxton W. C. Purification and characterization of cytosolic pyruvate kinase from leaves of the castor oil plant. Arch Biochem Biophys. 1996 Sep 1;333(1):298–307. doi: 10.1006/abbi.1996.0394. [DOI] [PubMed] [Google Scholar]
  13. Hubbard N. L., Pharr D. M., Huber S. C. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric. Plant Physiol. 1990 Sep;94(1):201–208. doi: 10.1104/pp.94.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Law R. D., Plaxton W. C. Purification and characterization of a novel phosphoenolpyruvate carboxylase from banana fruit. Biochem J. 1995 May 1;307(Pt 3):807–816. doi: 10.1042/bj3070807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Law R. D., Plaxton W. C. Regulatory phosphorylation of banana fruit phosphoenolpyruvate carboxylase by a copurifying phosphoenolpyruvate carboxylase-kinase. Eur J Biochem. 1997 Jul 15;247(2):642–651. doi: 10.1111/j.1432-1033.1997.00642.x. [DOI] [PubMed] [Google Scholar]
  17. Lin M., Turpin D. H., Plaxton W. C. Pyruvate kinase isozymes from the green alga, Selenastrum minutum. II. Kinetic and regulatory properties. Arch Biochem Biophys. 1989 Feb 15;269(1):228–238. doi: 10.1016/0003-9861(89)90104-5. [DOI] [PubMed] [Google Scholar]
  18. Moraes T. F., Plaxton W. C. Purification and characterization of phosphoenolpyruvate carboxylase from Brassica napus (rapeseed) suspension cell cultures: implications for phosphoenolpyruvate carboxylase regulation during phosphate starvation, and the integration of glycolysis with nitrogen assimilation. Eur J Biochem. 2000 Jul;267(14):4465–4476. doi: 10.1046/j.1432-1327.2000.01495.x. [DOI] [PubMed] [Google Scholar]
  19. Muirhead H. Isoenzymes of pyruvate kinase. Biochem Soc Trans. 1990 Apr;18(2):193–196. doi: 10.1042/bst0180193. [DOI] [PubMed] [Google Scholar]
  20. Plaxton W. C., Dennis D. T., Knowles V. L. Purification of leucoplast pyruvate kinase from developing castor bean endosperm. Plant Physiol. 1990 Dec;94(4):1528–1534. doi: 10.1104/pp.94.4.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Plaxton W. C. Molecular and immunological characterization of plastid and cytosolic pyruvate kinase isozymes from castor-oil-plant endosperm and leaf. Eur J Biochem. 1989 May 1;181(2):443–451. doi: 10.1111/j.1432-1033.1989.tb14745.x. [DOI] [PubMed] [Google Scholar]
  22. Plaxton W. C. Purification of pyruvate kinase from germinating castor bean endosperm. Plant Physiol. 1988 Apr;86(4):1064–1069. doi: 10.1104/pp.86.4.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Plaxton W. C., Storey K. B. Phosphorylation in vivo of red-muscle pyruvate kinase from the channelled whelk, Busycotypus canaliculatum, in response to anoxic stress. Eur J Biochem. 1984 Sep 3;143(2):267–272. doi: 10.1111/j.1432-1033.1984.tb08368.x. [DOI] [PubMed] [Google Scholar]
  24. Plaxton William C. THE ORGANIZATION AND REGULATION OF PLANT GLYCOLYSIS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):185–214. doi: 10.1146/annurev.arplant.47.1.185. [DOI] [PubMed] [Google Scholar]
  25. Podesta F. E., Plaxton W. C. Activation of Cytosolic Pyruvate Kinase by Polyethylene Glycol. Plant Physiol. 1993 Sep;103(1):285–288. doi: 10.1104/pp.103.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Podestá F. E., Plaxton W. C. Kinetic and regulatory properties of cytosolic pyruvate kinase from germinating castor oil seeds. Biochem J. 1991 Oct 15;279(Pt 2):495–501. doi: 10.1042/bj2790495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith C. R., Knowles V. L., Plaxton W. C. Purification and characterization of cytosolic pyruvate kinase from Brassica napus (rapeseed) suspension cell cultures: implications for the integration of glycolysis with nitrogen assimilation. Eur J Biochem. 2000 Jul;267(14):4477–4485. doi: 10.1046/j.1432-1327.2000.01494.x. [DOI] [PubMed] [Google Scholar]
  28. Wu F. S., Wang M. Y. Extraction of proteins for sodium dodecyl sulfate-polyacrylamide gel electrophoresis from protease-rich plant tissues. Anal Biochem. 1984 May 15;139(1):100–103. doi: 10.1016/0003-2697(84)90394-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES