Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jan 1;353(Pt 1):13–22.

Msx3 protein recruits histone deacetylase to down-regulate the Msx1 promoter.

R Mehra-Chaudhary 1, H Matsui 1, R Raghow 1
PMCID: PMC1221538  PMID: 11115394

Abstract

Msx1 promoter is known to be repressed by Msx1 protein [Shetty, Takahashi, Matsui, Iyengar and Raghow (1999) Biochem. J. 339, 751-758]. We show that in the transiently transfected C(2)C(12) myoblasts, co-expression of Msx3 also causes potent repression of Msx1 promoter that can be relieved by exogenous expression of cAMP-response-element-binding protein-binding protein (CBP) and p300 in a dose-dependent manner. Co-immunoprecipitation and Western blot analyses revealed that Msx3 interacts with CBP and p300 and this interaction significantly decreases the histone acetyltransferase (HAT) activity of both proteins. We also discovered that Msx3-mediated repression of Msx1 promoter is synergized by the exogenous co-expression of histone deacetylase 1 (HDAC1). Furthermore, the repression of Msx1 promoter by Msx3 could be relieved by treating transfected cells with trichostatin A, an inhibitor of HDAC(s). Finally, we show that Msx3 and HDAC1 can be co-immunoprecipitated in a complex that does not contain CBP and that Msx3 and HDAC1 proteins are co-localized in the nucleus. Taken together, our results strongly suggest that two distinct multiprotein complexes are present within the nuclei of C(2)C(12) cells: one containing Msx3 and HDAC(s) and another containing Msx3 and CBP and/or p300. On the basis of these results, we propose a dual mechanism of repression by Msx3 protein that involves the squelching of the HAT activity of co-activators, CBP and p300, and recruitment of HDAC(s).

Full Text

The Full Text of this article is available as a PDF (225.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ait-Si-Ali S., Ramirez S., Robin P., Trouche D., Harel-Bellan A. A rapid and sensitive assay for histone acetyl-transferase activity. Nucleic Acids Res. 1998 Aug 15;26(16):3869–3870. doi: 10.1093/nar/26.16.3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong J. A., Emerson B. M. Transcription of chromatin: these are complex times. Curr Opin Genet Dev. 1998 Apr;8(2):165–172. doi: 10.1016/s0959-437x(98)80137-8. [DOI] [PubMed] [Google Scholar]
  3. Bannister A. J., Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996 Dec 19;384(6610):641–643. doi: 10.1038/384641a0. [DOI] [PubMed] [Google Scholar]
  4. Björklund S., Almouzni G., Davidson I., Nightingale K. P., Weiss K. Global transcription regulators of eukaryotes. Cell. 1999 Mar 19;96(6):759–767. doi: 10.1016/s0092-8674(00)80586-3. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Brehm A., Miska E. A., McCance D. J., Reid J. L., Bannister A. J., Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998 Feb 5;391(6667):597–601. doi: 10.1038/35404. [DOI] [PubMed] [Google Scholar]
  7. Catron K. M., Wang H., Hu G., Shen M. M., Abate-Shen C. Comparison of MSX-1 and MSX-2 suggests a molecular basis for functional redundancy. Mech Dev. 1996 Apr;55(2):185–199. doi: 10.1016/0925-4773(96)00503-5. [DOI] [PubMed] [Google Scholar]
  8. Catron K. M., Zhang H., Marshall S. C., Inostroza J. A., Wilson J. M., Abate C. Transcriptional repression by Msx-1 does not require homeodomain DNA-binding sites. Mol Cell Biol. 1995 Feb;15(2):861–871. doi: 10.1128/mcb.15.2.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davidson D. The function and evolution of Msx genes: pointers and paradoxes. Trends Genet. 1995 Oct;11(10):405–411. doi: 10.1016/s0168-9525(00)89124-6. [DOI] [PubMed] [Google Scholar]
  10. Doetzlhofer A., Rotheneder H., Lagger G., Koranda M., Kurtev V., Brosch G., Wintersberger E., Seiser C. Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol. 1999 Aug;19(8):5504–5511. doi: 10.1128/mcb.19.8.5504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finnin M. S., Donigian J. R., Cohen A., Richon V. M., Rifkind R. A., Marks P. A., Breslow R., Pavletich N. P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999 Sep 9;401(6749):188–193. doi: 10.1038/43710. [DOI] [PubMed] [Google Scholar]
  12. Foerst-Potts L., Sadler T. W. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development. Dev Dyn. 1997 May;209(1):70–84. doi: 10.1002/(SICI)1097-0177(199705)209:1<70::AID-AJA7>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  13. Grimes J. A., Nielsen S. J., Battaglioli E., Miska E. A., Speh J. C., Berry D. L., Atouf F., Holdener B. C., Mandel G., Kouzarides T. The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J Biol Chem. 2000 Mar 31;275(13):9461–9467. doi: 10.1074/jbc.275.13.9461. [DOI] [PubMed] [Google Scholar]
  14. Gu W., Roeder R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997 Aug 22;90(4):595–606. doi: 10.1016/s0092-8674(00)80521-8. [DOI] [PubMed] [Google Scholar]
  15. Hassig C. A., Tong J. K., Fleischer T. C., Owa T., Grable P. G., Ayer D. E., Schreiber S. L. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3519–3524. doi: 10.1073/pnas.95.7.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Houzelstein D., Cohen A., Buckingham M. E., Robert B. Insertional mutation of the mouse Msx1 homeobox gene by an nlacZ reporter gene. Mech Dev. 1997 Jul;65(1-2):123–133. doi: 10.1016/s0925-4773(97)00065-8. [DOI] [PubMed] [Google Scholar]
  17. Ivens A., Flavin N., Williamson R., Dixon M., Bates G., Buckingham M., Robert B. The human homeobox gene HOX7 maps to chromosome 4p16.1 and may be implicated in Wolf-Hirschhorn syndrome. Hum Genet. 1990 Apr;84(5):473–476. doi: 10.1007/BF00195823. [DOI] [PubMed] [Google Scholar]
  18. Jabs E. W., Müller U., Li X., Ma L., Luo W., Haworth I. S., Klisak I., Sparkes R., Warman M. L., Mulliken J. B. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell. 1993 Nov 5;75(3):443–450. doi: 10.1016/0092-8674(93)90379-5. [DOI] [PubMed] [Google Scholar]
  19. Kadosh D., Struhl K. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol. 1998 Sep;18(9):5121–5127. doi: 10.1128/mcb.18.9.5121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kornberg R. D., Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 1999 Aug 6;98(3):285–294. doi: 10.1016/s0092-8674(00)81958-3. [DOI] [PubMed] [Google Scholar]
  21. Kuo M. H., Allis C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998 Aug;20(8):615–626. doi: 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  22. Kuzuoka M., Takahashi T., Guron C., Raghow R. Murine homeobox-containing gene, Msx-1: analysis of genomic organization, promoter structure, and potential autoregulatory cis-acting elements. Genomics. 1994 May 1;21(1):85–91. doi: 10.1006/geno.1994.1228. [DOI] [PubMed] [Google Scholar]
  23. Magnaghi-Jaulin L., Groisman R., Naguibneva I., Robin P., Lorain S., Le Villain J. P., Troalen F., Trouche D., Harel-Bellan A. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature. 1998 Feb 5;391(6667):601–605. doi: 10.1038/35410. [DOI] [PubMed] [Google Scholar]
  24. Marazzi G., Wang Y., Sassoon D. Msx2 is a transcriptional regulator in the BMP4-mediated programmed cell death pathway. Dev Biol. 1997 Jun 15;186(2):127–138. doi: 10.1006/dbio.1997.8576. [DOI] [PubMed] [Google Scholar]
  25. Ogryzko V. V., Schiltz R. L., Russanova V., Howard B. H., Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996 Nov 29;87(5):953–959. doi: 10.1016/s0092-8674(00)82001-2. [DOI] [PubMed] [Google Scholar]
  26. Ptashne M., Gann A. Transcriptional activation by recruitment. Nature. 1997 Apr 10;386(6625):569–577. doi: 10.1038/386569a0. [DOI] [PubMed] [Google Scholar]
  27. Satokata I., Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet. 1994 Apr;6(4):348–356. doi: 10.1038/ng0494-348. [DOI] [PubMed] [Google Scholar]
  28. Shetty S., Takahashi T., Matsui H., Ayengar R., Raghow R. Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300). Biochem J. 1999 May 1;339(Pt 3):751–758. [PMC free article] [PubMed] [Google Scholar]
  29. Shimeld S. M., McKay I. J., Sharpe P. T. The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube. Mech Dev. 1996 Apr;55(2):201–210. doi: 10.1016/0925-4773(96)00505-9. [DOI] [PubMed] [Google Scholar]
  30. Smith C. L., Hager G. L. Transcriptional regulation of mammalian genes in vivo. A tale of two templates. J Biol Chem. 1997 Oct 31;272(44):27493–27496. doi: 10.1074/jbc.272.44.27493. [DOI] [PubMed] [Google Scholar]
  31. Song K., Wang Y., Sassoon D. Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature. 1992 Dec 3;360(6403):477–481. doi: 10.1038/360477a0. [DOI] [PubMed] [Google Scholar]
  32. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998 Mar 1;12(5):599–606. doi: 10.1101/gad.12.5.599. [DOI] [PubMed] [Google Scholar]
  33. Takahashi T., Guron C., Shetty S., Matsui H., Raghow R. A minimal murine Msx-1 gene promoter. Organization of its cis-regulatory motifs and their role in transcriptional activation in cells in culture and in transgenic mice. J Biol Chem. 1997 Sep 5;272(36):22667–22678. doi: 10.1074/jbc.272.36.22667. [DOI] [PubMed] [Google Scholar]
  34. Thompson-Jaeger S., Raghow R. Exogenous expression of Msx1 renders myoblasts refractory to differentiation into myotubes and elicits enhanced biosynthesis of four unique mRNAs. Mol Cell Biochem. 2000 May;208(1-2):63–69. doi: 10.1023/a:1007069317131. [DOI] [PubMed] [Google Scholar]
  35. Torchia J., Glass C., Rosenfeld M. G. Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol. 1998 Jun;10(3):373–383. doi: 10.1016/s0955-0674(98)80014-8. [DOI] [PubMed] [Google Scholar]
  36. Tsukiyama T., Wu C. Chromatin remodeling and transcription. Curr Opin Genet Dev. 1997 Apr;7(2):182–191. doi: 10.1016/s0959-437x(97)80127-x. [DOI] [PubMed] [Google Scholar]
  37. Utley R. T., Ikeda K., Grant P. A., Côté J., Steger D. J., Eberharter A., John S., Workman J. L. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature. 1998 Jul 30;394(6692):498–502. doi: 10.1038/28886. [DOI] [PubMed] [Google Scholar]
  38. Vastardis H., Karimbux N., Guthua S. W., Seidman J. G., Seidman C. E. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet. 1996 Aug;13(4):417–421. doi: 10.1038/ng0896-417. [DOI] [PubMed] [Google Scholar]
  39. Wang W., Chen X., Xu H., Lufkin T. Msx3: a novel murine homologue of the Drosophila msh homeobox gene restricted to the dorsal embryonic central nervous system. Mech Dev. 1996 Aug;58(1-2):203–215. doi: 10.1016/s0925-4773(96)00562-x. [DOI] [PubMed] [Google Scholar]
  40. Woloshin P., Song K., Degnin C., Killary A. M., Goldhamer D. J., Sassoon D., Thayer M. J. MSX1 inhibits myoD expression in fibroblast x 10T1/2 cell hybrids. Cell. 1995 Aug 25;82(4):611–620. doi: 10.1016/0092-8674(95)90033-0. [DOI] [PubMed] [Google Scholar]
  41. Wong C. W., Privalsky M. L. Transcriptional repression by the SMRT-mSin3 corepressor: multiple interactions, multiple mechanisms, and a potential role for TFIIB. Mol Cell Biol. 1998 Sep;18(9):5500–5510. doi: 10.1128/mcb.18.9.5500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yoshida M., Horinouchi S., Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays. 1995 May;17(5):423–430. doi: 10.1002/bies.950170510. [DOI] [PubMed] [Google Scholar]
  43. Yoshida M., Kijima M., Akita M., Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990 Oct 5;265(28):17174–17179. [PubMed] [Google Scholar]
  44. Youn H. D., Liu J. O. Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity. 2000 Jul;13(1):85–94. doi: 10.1016/s1074-7613(00)00010-8. [DOI] [PubMed] [Google Scholar]
  45. Zhang H., Catron K. M., Abate-Shen C. A role for the Msx-1 homeodomain in transcriptional regulation: residues in the N-terminal arm mediate TATA binding protein interaction and transcriptional repression. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1764–1769. doi: 10.1073/pnas.93.5.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhang Y., LeRoy G., Seelig H. P., Lane W. S., Reinberg D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell. 1998 Oct 16;95(2):279–289. doi: 10.1016/s0092-8674(00)81758-4. [DOI] [PubMed] [Google Scholar]
  47. Zhang Y., Ng H. H., Erdjument-Bromage H., Tempst P., Bird A., Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999 Aug 1;13(15):1924–1935. doi: 10.1101/gad.13.15.1924. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES