Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jan 1;353(Pt 1):91–100.

Evidence for the presence of phospholipid hydroperoxide glutathione peroxidase in human platelets: implications for its involvement in the regulatory network of the 12-lipoxygenase pathway of arachidonic acid metabolism.

M Sutherland 1, P Shankaranarayanan 1, T Schewe 1, S Nigam 1
PMCID: PMC1221546  PMID: 11115402

Abstract

The 12-lipoxygenase pathway of arachidonic acid metabolism in platelets and other cells is bifurcated into a reduction route yielding 12-hydroxyeicosatetraenoic acid (12-HETE) and an isomerization route forming hepoxilins. Here we show for the first time the presence of phospholipid hydroperoxide glutathione peroxidase (PHGPx) protein and its activity in platelets. The ratio of the activity of PHGPx to that of cytosolic glutathione peroxidase (GPx-1) was consistently found to be approx. 1:60 in platelets and UT7 megakaryoblasts. Moreover, short-lived PHGPx mRNA was detected in megakaryocytes but not in platelets. Carboxymethylation of selenium-containing glutathione peroxidases by iodoacetate, which results in the inactivation of PHGPx and GPx-1 without inhibition of 12-lipoxygenase, markedly altered the pattern of arachidonic acid metabolism in human platelets. Whereas the formation of 12-HETE was inhibited by 80%, a concomitant accumulation of 12-hydroperoxyeicosatetraenoic acid (12-HpETE) by two orders of magnitude as well as the formation of hepoxilins A(3) and B(3) were observed. The formation of hepoxilins also occurred when 12-HpETE was added to untreated platelets. In selenium-deficient UT7 cells, which were devoid of GPx-1 but not of PHGPx, the reduction of 12-HPETE was retained, albeit with a lower rate than in control cells containing GPx-1. We therefore believe that both GPx-1 and PHGPx are involved in the regulatory network of the 12-lipoxygenase pathway in platelets and other mammalian cells. Moreover, the diminution of hydroperoxide tone in platelets incubated with arachidonic acid leads primarily to the formation of 12-HETE, whereas the increase in hydroperoxide tone (a situation found under oxidative stress or selenium deficiency or on incubation with 12-HPETE) partly diverts the 12-lipoxygenase pathway from the reduction route to the isomerization route, thus resulting in the formation of hepoxilins.

Full Text

The Full Text of this article is available as a PDF (215.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med. 1999 Nov;27(9-10):951–965. doi: 10.1016/s0891-5849(99)00173-2. [DOI] [PubMed] [Google Scholar]
  2. Brinckmann R., Schnurr K., Heydeck D., Rosenbach T., Kolde G., Kühn H. Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood. 1998 Jan 1;91(1):64–74. [PubMed] [Google Scholar]
  3. Bryant R. W., Simon T. C., Bailey J. M. Role of glutathione peroxidase and hexose monophosphate shunt in the platelet lipoxygenase pathway. J Biol Chem. 1982 Dec 25;257(24):14937–14943. [PubMed] [Google Scholar]
  4. Chaitidis P., Schewe T., Sutherland M., Kühn H., Nigam S. 15-Lipoxygenation of phospholipids may precede the sn-2 cleavage by phospholipases A2: reaction specificities of secretory and cytosolic phospholipases A2 towards native and 15-lipoxygenated arachidonoyl phospholipids. FEBS Lett. 1998 Sep 4;434(3):437–441. doi: 10.1016/s0014-5793(98)01024-2. [DOI] [PubMed] [Google Scholar]
  5. Chambers S. J., Lambert N., Williamson G. Purification of a cytosolic enzyme from human liver with phospholipid hydroperoxide glutathione peroxidase activity. Int J Biochem. 1994 Oct-Nov;26(10-11):1279–1286. doi: 10.1016/0020-711x(94)90097-3. [DOI] [PubMed] [Google Scholar]
  6. Chen C. J., Huang H. S., Lee Y. T., Yang C. Y., Chang W. C. Characterization and purification of a lipoxygenase inhibitor in human epidermoid carcinoma A431 cells. Biochem J. 1997 Oct 1;327(Pt 1):193–198. doi: 10.1042/bj3270193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Demin P., Reynaud D., Pace-Asciak C. R. Extractive derivatization of the 12-lipoxygenase products, hepoxilins, and related compounds into fluorescent anthryl esters for their complete high-performance liquid chromatography profiling in biological systems. Anal Biochem. 1995 Apr 10;226(2):252–255. doi: 10.1006/abio.1995.1222. [DOI] [PubMed] [Google Scholar]
  8. Forstrom J. W., Zakowski J. J., Tappel A. L. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry. 1978 Jun 27;17(13):2639–2644. doi: 10.1021/bi00606a028. [DOI] [PubMed] [Google Scholar]
  9. Fruteau de Laclos B., Maclouf J., Poubelle P., Borgeat P. Conversion of arachidonic acid into 12-oxo derivatives in human platelets. A pathway possibly involving the heme-catalysed transformation of 12-hydroperoxy-eicosatetraenoic acid. Prostaglandins. 1987 Mar;33(3):315–337. doi: 10.1016/0090-6980(87)90016-5. [DOI] [PubMed] [Google Scholar]
  10. Hagmann W., Gao X., Timar J., Chen Y. Q., Strohmaier A. R., Fahrenkopf C., Kagawa D., Lee M., Zacharek A., Honn K. V. 12-Lipoxygenase in A431 cells: genetic identity, modulation of expression, and intracellular localization. Exp Cell Res. 1996 Nov 1;228(2):197–205. doi: 10.1006/excr.1996.0317. [DOI] [PubMed] [Google Scholar]
  11. Hamberg M., Svensson J., Wakabayashi T., Samuelsson B. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc Natl Acad Sci U S A. 1974 Feb;71(2):345–349. doi: 10.1073/pnas.71.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hatzelmann A., Schatz M., Ullrich V. Involvement of glutathione peroxidase activity in the stimulation of 5-lipoxygenase activity by glutathione-depleting agents in human polymorphonuclear leukocytes. Eur J Biochem. 1989 Apr 1;180(3):527–533. doi: 10.1111/j.1432-1033.1989.tb14678.x. [DOI] [PubMed] [Google Scholar]
  13. Hecker G., Utz J., Kupferschmidt R. J., Ullrich V. Low levels of hydrogen peroxide enhance platelet aggregation by cyclooxygenase activation. Eicosanoids. 1991;4(2):107–113. [PubMed] [Google Scholar]
  14. Ho Y. S., Magnenat J. L., Bronson R. T., Cao J., Gargano M., Sugawara M., Funk C. D. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem. 1997 Jun 27;272(26):16644–16651. doi: 10.1074/jbc.272.26.16644. [DOI] [PubMed] [Google Scholar]
  15. Honn K. V., Tang D. G., Gao X., Butovich I. A., Liu B., Timar J., Hagmann W. 12-lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev. 1994 Dec;13(3-4):365–396. doi: 10.1007/BF00666105. [DOI] [PubMed] [Google Scholar]
  16. Huang H. S., Chen C. J., Lu H. S., Chang W. C. Identification of a lipoxygenase inhibitor in A431 cells as a phospholipid hydroperoxide glutathione peroxidase. FEBS Lett. 1998 Mar 6;424(1-2):22–26. doi: 10.1016/s0014-5793(98)00130-6. [DOI] [PubMed] [Google Scholar]
  17. Huang H. S., Chen C. J., Suzuki H., Yamamoto S., Chang W. C. Inhibitory effect of phospholipid hydroperoxide glutathione peroxidase on the activity of lipoxygenases and cyclooxygenases. Prostaglandins Other Lipid Mediat. 1999 Oct;58(2-4):65–75. doi: 10.1016/s0090-6980(99)00017-9. [DOI] [PubMed] [Google Scholar]
  18. Imai H., Narashima K., Arai M., Sakamoto H., Chiba N., Nakagawa Y. Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase. J Biol Chem. 1998 Jan 23;273(4):1990–1997. doi: 10.1074/jbc.273.4.1990. [DOI] [PubMed] [Google Scholar]
  19. Ishibashi T., Ruggeri Z. M., Harker L. A., Burstein S. A. Separation of human megakaryocytes by state of differentiation on continuous gradients of Percoll: size and ploidy analysis of cells identified by monoclonal antibody to glycoprotein IIb/IIIa. Blood. 1986 May;67(5):1286–1292. [PubMed] [Google Scholar]
  20. Jacquier-Sarlin M. R., Fuller K., Dinh-Xuan A. T., Richard M. J., Polla B. S. Protective effects of hsp70 in inflammation. Experientia. 1994 Nov 30;50(11-12):1031–1038. doi: 10.1007/BF01923458. [DOI] [PubMed] [Google Scholar]
  21. Lagarde M., Véricel E., Chabannes B., Prigent A. F. Blood cell redox status and fatty acids. Prostaglandins Leukot Essent Fatty Acids. 1995 Feb-Mar;52(2-3):159–161. doi: 10.1016/0952-3278(95)90015-2. [DOI] [PubMed] [Google Scholar]
  22. Lin Z., Laneuville O., Pace-Asciak C. R. Hepoxilin A3 induces heat shock protein (HSP72) expression in human neutrophils. Biochem Biophys Res Commun. 1991 Aug 30;179(1):52–56. doi: 10.1016/0006-291x(91)91332-7. [DOI] [PubMed] [Google Scholar]
  23. Liu Y. W., Chen B. K., Chen C. J., Arakawa T., Yoshimoto T., Yamamoto S., Chang W. C. Epidermal growth factor enhances transcription of human arachidonate 12-lipoxygenase in A431 cells. Biochim Biophys Acta. 1997 Jan 7;1344(1):38–46. doi: 10.1016/s0005-2760(96)00128-2. [DOI] [PubMed] [Google Scholar]
  24. Ludwig P., Holzhütter H. G., Colosimo A., Silvestrini M. C., Schewe T., Rapoport S. M. A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes. Eur J Biochem. 1987 Oct 15;168(2):325–337. doi: 10.1111/j.1432-1033.1987.tb13424.x. [DOI] [PubMed] [Google Scholar]
  25. Madoiwa S., Komatsu N., Mimuro J., Kimura K., Matsuda M., Sakata Y. Developmental expression of plasminogen activator inhibitor-1 associated with thrombopoietin-dependent megakaryocytic differentiation. Blood. 1999 Jul 15;94(2):475–482. [PubMed] [Google Scholar]
  26. Margalit A., Sofer Y., Grossman S., Reynaud D., Pace-Asciak C. R., Livne A. A. Hepoxilin A3 is the endogenous lipid mediator opposing hypotonic swelling of intact human platelets. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2589–2592. doi: 10.1073/pnas.90.7.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marshall P. J., Kulmacz R. J., Lands W. E. Constraints on prostaglandin biosynthesis in tissues. J Biol Chem. 1987 Mar 15;262(8):3510–3517. [PubMed] [Google Scholar]
  28. Ochi H., Morita I., Murota S. Roles of glutathione and glutathione peroxidase in the protection against endothelial cell injury induced by 15-hydroperoxyeicosatetraenoic acid. Arch Biochem Biophys. 1992 May 1;294(2):407–411. doi: 10.1016/0003-9861(92)90704-z. [DOI] [PubMed] [Google Scholar]
  29. Pace-Asciak C. R. Hepoxilins: a review on their cellular actions. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):1–8. doi: 10.1016/0005-2760(94)90087-6. [DOI] [PubMed] [Google Scholar]
  30. Pouliot M., McDonald P. P., Krump E., Mancini J. A., McColl S. R., Weech P. K., Borgeat P. Colocalization of cytosolic phospholipase A2, 5-lipoxygenase, and 5-lipoxygenase-activating protein at the nuclear membrane of A23187-stimulated human neutrophils. Eur J Biochem. 1996 May 15;238(1):250–258. doi: 10.1111/j.1432-1033.1996.0250q.x. [DOI] [PubMed] [Google Scholar]
  31. Schewe T., Hiebsch C., Ludwig P., Rapoport S. M. Haemoglobin potentiates the respiration-inhibitory action of lipoxygenases via its pseudolipohydroperoxidase activity. Biomed Biochim Acta. 1983;42(7-8):789–803. [PubMed] [Google Scholar]
  32. Schewe T., Rapoport S. M., Kühn H. Enzymology and physiology of reticulocyte lipoxygenase: comparison with other lipoxygenases. Adv Enzymol Relat Areas Mol Biol. 1986;58:191–272. doi: 10.1002/9780470123041.ch6. [DOI] [PubMed] [Google Scholar]
  33. Schnurr K., Belkner J., Ursini F., Schewe T., Kühn H. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J Biol Chem. 1996 Mar 1;271(9):4653–4658. doi: 10.1074/jbc.271.9.4653. [DOI] [PubMed] [Google Scholar]
  34. Schnurr K., Borchert A., Kuhn H. Inverse regulation of lipid-peroxidizing and hydroperoxyl lipid-reducing enzymes by interleukins 4 and 13. FASEB J. 1999 Jan;13(1):143–154. doi: 10.1096/fasebj.13.1.143. [DOI] [PubMed] [Google Scholar]
  35. Sutherland M., Schewe T., Nigam S. Biological actions of the free acid of hepoxilin A3 on human neutrophils. Biochem Pharmacol. 2000 Feb 15;59(4):435–440. doi: 10.1016/s0006-2952(99)00345-7. [DOI] [PubMed] [Google Scholar]
  36. Tanaka H., Ishida Y., Kaneko T., Matsumoto N. Isolation of human megakaryocytes by immunomagnetic beads. Br J Haematol. 1989 Sep;73(1):18–22. doi: 10.1111/j.1365-2141.1989.tb00212.x. [DOI] [PubMed] [Google Scholar]
  37. Tomer A., Harker L. A., Burstein S. A. Purification of human megakaryocytes by fluorescence-activated cell sorting. Blood. 1987 Dec;70(6):1735–1742. [PubMed] [Google Scholar]
  38. Weitzel F., Wendel A. Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J Biol Chem. 1993 Mar 25;268(9):6288–6292. [PubMed] [Google Scholar]
  39. Yamamoto S., Suzuki H., Ueda N. Arachidonate 12-lipoxygenases. Prog Lipid Res. 1997 Mar;36(1):23–41. doi: 10.1016/s0163-7827(97)00002-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES