Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jan 1;353(Pt 1):109–116.

Interleukin 9 induces expression of three cytokine signal inhibitors: cytokine-inducible SH2-containing protein, suppressor of cytokine signalling (SOCS)-2 and SOCS-3, but only SOCS-3 overexpression suppresses interleukin 9 signalling.

D Lejeune 1, J B Demoulin 1, J C Renauld 1
PMCID: PMC1221548  PMID: 11115404

Abstract

Interleukin 9 (IL-9) is a cytokine preferentially produced by T helper type 2 lymphocytes and active on various cell types such as T- and B-lymphocytes, mast cells and haemopoietic progenitors. The IL-9 receptor (IL-9R) belongs to the haemopoietic receptor superfamily and its signal transduction involves mainly the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Here we studied the implication of a novel family of suppressors of cytokine signalling (called CIS, for cytokine-inducible SH2-containing protein, and SOCS, for suppressor of cytokine signalling) in IL-9 signal attenuation. In BW5147 T-cell lymphoma, IL-9 induced the rapid expression of CIS, SOCS-2 and SOCS-3 with a peak after 2 h of stimulation. Using IL-9R mutants, we showed that STAT activation is required for CIS/SOCS induction: CIS and SOCS-2 expression was induced either via STAT1 and/or STAT3 or via STAT5 but only STAT1 and/or STAT3 were involved in SOCS-3 expression. The effect of these three proteins on IL-9 signal transduction was assessed by transient transfection in HEK-293 cells expressing the components of the IL-9 signalling pathway and a STAT-responsive reporter construct. These experiments showed that only SOCS-3 is able to inhibit IL-9-induced signal transduction; neither CIS nor SOCS-2 exerted any effect. Stable transfection of CIS and SOCS-3 in BW5147 lymphoma cells showed that only overexpression of SOCS-3 had an inhibitory activity on STAT activation, gene induction and the anti-apoptotic activity of IL-9. By contrast, CIS failed to affect the IL-9 response.

Full Text

The Full Text of this article is available as a PDF (266.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams T. E., Hansen J. A., Starr R., Nicola N. A., Hilton D. J., Billestrup N. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem. 1998 Jan 16;273(3):1285–1287. doi: 10.1074/jbc.273.3.1285. [DOI] [PubMed] [Google Scholar]
  2. Cohney S. J., Sanden D., Cacalano N. A., Yoshimura A., Mui A., Migone T. S., Johnston J. A. SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol Cell Biol. 1999 Jul;19(7):4980–4988. doi: 10.1128/mcb.19.7.4980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davey H. W., McLachlan M. J., Wilkins R. J., Hilton D. J., Adams T. E. STAT5b mediates the GH-induced expression of SOCS-2 and SOCS-3 mRNA in the liver. Mol Cell Endocrinol. 1999 Dec 20;158(1-2):111–116. doi: 10.1016/s0303-7207(99)00175-6. [DOI] [PubMed] [Google Scholar]
  4. Demoulin J. B., Renauld J. C. Signalling by cytokines interacting with the interleukin-2 receptor gamma chain. Cytokines Cell Mol Ther. 1998 Dec;4(4):243–256. [PubMed] [Google Scholar]
  5. Demoulin J. B., Uyttenhove C., Van Roost E., DeLestré B., Donckers D., Van Snick J., Renauld J. C. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710–4716. doi: 10.1128/mcb.16.9.4710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Demoulin J. B., Van Roost E., Stevens M., Groner B., Renauld J. C. Distinct roles for STAT1, STAT3, and STAT5 in differentiation gene induction and apoptosis inhibition by interleukin-9. J Biol Chem. 1999 Sep 3;274(36):25855–25861. doi: 10.1074/jbc.274.36.25855. [DOI] [PubMed] [Google Scholar]
  7. Dong Q., Louahed J., Vink A., Sullivan C. D., Messler C. J., Zhou Y., Haczku A., Huaux F., Arras M., Holroyd K. J. IL-9 induces chemokine expression in lung epithelial cells and baseline airway eosinophilia in transgenic mice. Eur J Immunol. 1999 Jul;29(7):2130–2139. doi: 10.1002/(SICI)1521-4141(199907)29:07<2130::AID-IMMU2130>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  8. Druez C., Coulie P., Uyttenhove C., Van Snick J. Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol. 1990 Oct 15;145(8):2494–2499. [PubMed] [Google Scholar]
  9. Dugas B., Renauld J. C., Pène J., Bonnefoy J. Y., Peti-Frère C., Braquet P., Bousquet J., Van Snick J., Mencia-Huerta J. M. Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur J Immunol. 1993 Jul;23(7):1687–1692. doi: 10.1002/eji.1830230743. [DOI] [PubMed] [Google Scholar]
  10. Endo T. A., Masuhara M., Yokouchi M., Suzuki R., Sakamoto H., Mitsui K., Matsumoto A., Tanimura S., Ohtsubo M., Misawa H. A new protein containing an SH2 domain that inhibits JAK kinases. Nature. 1997 Jun 26;387(6636):921–924. doi: 10.1038/43213. [DOI] [PubMed] [Google Scholar]
  11. Gisselbrecht S. The CIS/SOCS proteins: a family of cytokine-inducible regulators of signaling. Eur Cytokine Netw. 1999 Dec;10(4):463–470. [PubMed] [Google Scholar]
  12. Godfraind C., Louahed J., Faulkner H., Vink A., Warnier G., Grencis R., Renauld J. C. Intraepithelial infiltration by mast cells with both connective tissue-type and mucosal-type characteristics in gut, trachea, and kidneys of IL-9 transgenic mice. J Immunol. 1998 Apr 15;160(8):3989–3996. [PubMed] [Google Scholar]
  13. Gotoh A., Takahira H., Mantel C., Litz-Jackson S., Boswell H. S., Broxmeyer H. E. Steel factor induces serine phosphorylation of Stat3 in human growth factor-dependent myeloid cell lines. Blood. 1996 Jul 1;88(1):138–145. [PubMed] [Google Scholar]
  14. Hilton D. J., Richardson R. T., Alexander W. S., Viney E. M., Willson T. A., Sprigg N. S., Starr R., Nicholson S. E., Metcalf D., Nicola N. A. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):114–119. doi: 10.1073/pnas.95.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holroyd K. J., Martinati L. C., Trabetti E., Scherpbier T., Eleff S. M., Boner A. L., Pignatti P. F., Kiser M. B., Dragwa C. R., Hubbard F. Asthma and bronchial hyperresponsiveness linked to the XY long arm pseudoautosomal region. Genomics. 1998 Sep 1;52(2):233–235. doi: 10.1006/geno.1998.5445. [DOI] [PubMed] [Google Scholar]
  16. Imbert V., Renauld P. R. Duration of STAT5 activation influences the response of interleukin-2 receptor alpha gene to different cytokines. Eur Cytokine Netw. 1999 Mar;10(1):71–78. [PubMed] [Google Scholar]
  17. Marine J. C., McKay C., Wang D., Topham D. J., Parganas E., Nakajima H., Pendeville H., Yasukawa H., Sasaki A., Yoshimura A. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell. 1999 Sep 3;98(5):617–627. doi: 10.1016/s0092-8674(00)80049-5. [DOI] [PubMed] [Google Scholar]
  18. Marine J. C., Topham D. J., McKay C., Wang D., Parganas E., Stravopodis D., Yoshimura A., Ihle J. N. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell. 1999 Sep 3;98(5):609–616. doi: 10.1016/s0092-8674(00)80048-3. [DOI] [PubMed] [Google Scholar]
  19. Marsh D. G., Neely J. D., Breazeale D. R., Ghosh B., Freidhoff L. R., Ehrlich-Kautzky E., Schou C., Krishnaswamy G., Beaty T. H. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science. 1994 May 20;264(5162):1152–1156. doi: 10.1126/science.8178175. [DOI] [PubMed] [Google Scholar]
  20. Matsumoto A., Masuhara M., Mitsui K., Yokouchi M., Ohtsubo M., Misawa H., Miyajima A., Yoshimura A. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood. 1997 May 1;89(9):3148–3154. [PubMed] [Google Scholar]
  21. Matsumoto A., Seki Y., Kubo M., Ohtsuka S., Suzuki A., Hayashi I., Tsuji K., Nakahata T., Okabe M., Yamada S. Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol. 1999 Sep;19(9):6396–6407. doi: 10.1128/mcb.19.9.6396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McLane M. P., Haczku A., van de Rijn M., Weiss C., Ferrante V., MacDonald D., Renauld J. C., Nicolaides N. C., Holroyd K. J., Levitt R. C. Interleukin-9 promotes allergen-induced eosinophilic inflammation and airway hyperresponsiveness in transgenic mice. Am J Respir Cell Mol Biol. 1998 Nov;19(5):713–720. doi: 10.1165/ajrcmb.19.5.3457. [DOI] [PubMed] [Google Scholar]
  23. Merz H., Houssiau F. A., Orscheschek K., Renauld J. C., Fliedner A., Herin M., Noel H., Kadin M., Mueller-Hermelink H. K., Van Snick J. Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin's disease and large cell anaplastic lymphoma. Blood. 1991 Sep 1;78(5):1311–1317. [PubMed] [Google Scholar]
  24. Minamoto S., Ikegame K., Ueno K., Narazaki M., Naka T., Yamamoto H., Matsumoto T., Saito H., Hosoe S., Kishimoto T. Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem Biophys Res Commun. 1997 Aug 8;237(1):79–83. doi: 10.1006/bbrc.1997.7080. [DOI] [PubMed] [Google Scholar]
  25. Mizushima S., Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990 Sep 11;18(17):5322–5322. doi: 10.1093/nar/18.17.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Naka T., Narazaki M., Hirata M., Matsumoto T., Minamoto S., Aono A., Nishimoto N., Kajita T., Taga T., Yoshizaki K. Structure and function of a new STAT-induced STAT inhibitor. Nature. 1997 Jun 26;387(6636):924–929. doi: 10.1038/43219. [DOI] [PubMed] [Google Scholar]
  27. Narazaki M., Fujimoto M., Matsumoto T., Morita Y., Saito H., Kajita T., Yoshizaki K., Naka T., Kishimoto T. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13130–13134. doi: 10.1073/pnas.95.22.13130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nicolaides N. C., Holroyd K. J., Ewart S. L., Eleff S. M., Kiser M. B., Dragwa C. R., Sullivan C. D., Grasso L., Zhang L. Y., Messler C. J. Interleukin 9: a candidate gene for asthma. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13175–13180. doi: 10.1073/pnas.94.24.13175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ohya K. i., Kajigaya S., Yamashita Y., Miyazato A., Hatake K., Miura Y., Ikeda U., Shimada K., Ozawa K., Mano H. SOCS-1/JAB/SSI-1 can bind to and suppress Tec protein-tyrosine kinase. J Biol Chem. 1997 Oct 24;272(43):27178–27182. doi: 10.1074/jbc.272.43.27178. [DOI] [PubMed] [Google Scholar]
  30. Renauld J. C., Druez C., Kermouni A., Houssiau F., Uyttenhove C., Van Roost E., Van Snick J. Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5690–5694. doi: 10.1073/pnas.89.12.5690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Renauld J. C., Vink A., Louahed J., Van Snick J. Interleukin-9 is a major anti-apoptotic factor for thymic lymphomas. Blood. 1995 Mar 1;85(5):1300–1305. [PubMed] [Google Scholar]
  32. Richard M., Grencis R. K., Humphreys N. E., Renauld J. C., Van Snick J. Anti-IL-9 vaccination prevents worm expulsion and blood eosinophilia in Trichuris muris-infected mice. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):767–772. doi: 10.1073/pnas.97.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Russell S. M., Keegan A. D., Harada N., Nakamura Y., Noguchi M., Leland P., Friedmann M. C., Miyajima A., Puri R. K., Paul W. E. Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science. 1993 Dec 17;262(5141):1880–1883. doi: 10.1126/science.8266078. [DOI] [PubMed] [Google Scholar]
  34. Sakamoto H., Yasukawa H., Masuhara M., Tanimura S., Sasaki A., Yuge K., Ohtsubo M., Ohtsuka A., Fujita T., Ohta T. A Janus kinase inhibitor, JAB, is an interferon-gamma-inducible gene and confers resistance to interferons. Blood. 1998 Sep 1;92(5):1668–1676. [PubMed] [Google Scholar]
  35. Schmitz J., Weissenbach M., Haan S., Heinrich P. C., Schaper F. SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. J Biol Chem. 2000 Apr 28;275(17):12848–12856. doi: 10.1074/jbc.275.17.12848. [DOI] [PubMed] [Google Scholar]
  36. Starr R., Willson T. A., Viney E. M., Murray L. J., Rayner J. R., Jenkins B. J., Gonda T. J., Alexander W. S., Metcalf D., Nicola N. A. A family of cytokine-inducible inhibitors of signalling. Nature. 1997 Jun 26;387(6636):917–921. doi: 10.1038/43206. [DOI] [PubMed] [Google Scholar]
  37. Strauss B. H., Rabinovitch M. Adventitial fibroblasts: defining a role in vessel wall remodeling. Am J Respir Cell Mol Biol. 2000 Jan;22(1):1–3. doi: 10.1165/ajrcmb.22.1.f172. [DOI] [PubMed] [Google Scholar]
  38. Temann U. A., Geba G. P., Rankin J. A., Flavell R. A. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med. 1998 Oct 5;188(7):1307–1320. doi: 10.1084/jem.188.7.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tomic S., Chughtai N., Ali S. SOCS-1, -2, -3: selective targets and functions downstream of the prolactin receptor. Mol Cell Endocrinol. 1999 Dec 20;158(1-2):45–54. doi: 10.1016/s0303-7207(99)00180-x. [DOI] [PubMed] [Google Scholar]
  40. Uyttenhove C., Simpson R. J., Van Snick J. Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6934–6938. doi: 10.1073/pnas.85.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Van Snick J., Goethals A., Renauld J. C., Van Roost E., Uyttenhove C., Rubira M. R., Moritz R. L., Simpson R. J. Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J Exp Med. 1989 Jan 1;169(1):363–368. doi: 10.1084/jem.169.1.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vink A., Renauld J. C., Warnier G., Van Snick J. Interleukin-9 stimulates in vitro growth of mouse thymic lymphomas. Eur J Immunol. 1993 May;23(5):1134–1138. doi: 10.1002/eji.1830230523. [DOI] [PubMed] [Google Scholar]
  43. Wen Z., Zhong Z., Darnell J. E., Jr Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995 Jul 28;82(2):241–250. doi: 10.1016/0092-8674(95)90311-9. [DOI] [PubMed] [Google Scholar]
  44. Yasukawa H., Sasaki A., Yoshimura A. Negative regulation of cytokine signaling pathways. Annu Rev Immunol. 2000;18:143–164. doi: 10.1146/annurev.immunol.18.1.143. [DOI] [PubMed] [Google Scholar]
  45. Yin T., Keller S. R., Quelle F. W., Witthuhn B. A., Tsang M. L., Lienhard G. E., Ihle J. N., Yang Y. C. Interleukin-9 induces tyrosine phosphorylation of insulin receptor substrate-1 via JAK tyrosine kinases. J Biol Chem. 1995 Sep 1;270(35):20497–20502. doi: 10.1074/jbc.270.35.20497. [DOI] [PubMed] [Google Scholar]
  46. Yoshimura A., Ohkubo T., Kiguchi T., Jenkins N. A., Gilbert D. J., Copeland N. G., Hara T., Miyajima A. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 1995 Jun 15;14(12):2816–2826. doi: 10.1002/j.1460-2075.1995.tb07281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zhang X., Blenis J., Li H. C., Schindler C., Chen-Kiang S. Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science. 1995 Mar 31;267(5206):1990–1994. doi: 10.1126/science.7701321. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES