Abstract
L-Glutamine is a physiological inhibitor of endothelial NO synthesis. The present study was conducted to test the hypothesis that metabolism of glutamine to glucosamine is necessary for glutamine inhibition of endothelial NO generation. Bovine venular endothelial cells were cultured for 24 h in the presence of 0, 0.1, 0.5 or 2 mM D-glucosamine, or of 0.2 or 2 mM L-glutamine with or without 20 microM 6-diazo-5-oxo-L-norleucine (DON) or with 100 microM azaserine. Both DON and azaserine are inhibitors of L-glutamine:D-fructose-6-phosphate transaminase (isomerizing) (EC 2.6.1.16), the first and rate controlling enzyme in glucosamine synthesis. Glucosamine at 0.1, 0.5 and 2 mM decreased NO production by 34, 45 and 56% respectively compared with controls where glucosamine was lacking. DON (20 microM) and azaserine (100 microM) blocked glucosamine synthesis and prevented the inhibition of NO generation by glutamine. Neither glutamine nor glucosamine had an effect on NO synthase (NOS) activity, arginine transport or cellular tetrahydrobiopterin and Ca(2+) levels. However, both glutamine and glucosamine inhibited pentose cycle activity and decreased cellular NADPH concentrations; these effects of glutamine were abolished by DON or azaserine. Restoration of cellular NADPH levels by the addition of 1 mM citrate also prevented the inhibiting effect of glutamine or glucosamine on NO synthesis. A further increase in cellular NADPH levels by the addition of 5 mM citrate resulted in greater production of NO. Collectively, our results demonstrate that the metabolism of glutamine to glucosamine is necessary for the inhibition of endothelial NO generation by glutamine. Glucosamine reduces the cellular availability of NADPH (an essential cofactor for NOS) by inhibiting pentose cycle activity, and this may be a metabolic basis for the inhibition of endothelial NO synthesis by glucosamine.
Full Text
The Full Text of this article is available as a PDF (133.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnal J. F., Münzel T., Venema R. C., James N. L., Bai C. L., Mitch W. E., Harrison D. G. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest. 1995 Jun;95(6):2565–2572. doi: 10.1172/JCI117957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baron A. D., Zhu J. S., Zhu J. H., Weldon H., Maianu L., Garvey W. T. Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity. J Clin Invest. 1995 Dec;96(6):2792–2801. doi: 10.1172/JCI118349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan N. N., Vallance P., Colhoun H. M. Nitric oxide and vascular responses in Type I diabetes. Diabetologia. 2000 Feb;43(2):137–147. doi: 10.1007/s001250050022. [DOI] [PubMed] [Google Scholar]
- Cosentino F., Lüscher T. F. Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol. 1998;32 (Suppl 3):S54–S61. [PubMed] [Google Scholar]
- Fukushima T., Nixon J. C. Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem. 1980 Feb;102(1):176–188. doi: 10.1016/0003-2697(80)90336-x. [DOI] [PubMed] [Google Scholar]
- Hebert L. F., Jr, Daniels M. C., Zhou J., Crook E. D., Turner R. L., Simmons S. T., Neidigh J. L., Zhu J. S., Baron A. D., McClain D. A. Overexpression of glutamine:fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J Clin Invest. 1996 Aug 15;98(4):930–936. doi: 10.1172/JCI118876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hecker M., Mitchell J. A., Swierkosz T. A., Sessa W. C., Vane J. R. Inhibition by L-glutamine of the release of endothelium-derived relaxing factor from cultured endothelial cells. Br J Pharmacol. 1990 Oct;101(2):237–239. doi: 10.1111/j.1476-5381.1990.tb12693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hesterberg L. K., Lee J. C. Self-association of rabbit muscle phosphofructokinase: effects of ligands. Biochemistry. 1982 Jan 19;21(2):216–222. doi: 10.1021/bi00531a003. [DOI] [PubMed] [Google Scholar]
- Holmäng A., Nilsson C., Niklasson M., Larsson B. M., Lönroth P. Induction of insulin resistance by glucosamine reduces blood flow but not interstitial levels of either glucose or insulin. Diabetes. 1999 Jan;48(1):106–111. doi: 10.2337/diabetes.48.1.106. [DOI] [PubMed] [Google Scholar]
- Houdijk A. P., Visser J. J., Rijnsburger E. R., Teerlink T., van Leeuwen P. A. Dietary glutamine supplementation reduces plasma nitrate levels in rats. Clin Nutr. 1998 Feb;17(1):11–14. doi: 10.1016/s0261-5614(98)80037-x. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Cirino G., Casini A., Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol. 1999 Dec;34(6):879–886. doi: 10.1097/00005344-199912000-00016. [DOI] [PubMed] [Google Scholar]
- Kanji M. I., Toews M. L., Carper W. R. A kinetic study of glucose-6-phosphate dehydrogenase. J Biol Chem. 1976 Apr 25;251(8):2258–2262. [PubMed] [Google Scholar]
- Khogali S. E., Harper A. A., Lyall J. A., Rennie M. J. Effects of L-glutamine on post-ischaemic cardiac function: protection and rescue. J Mol Cell Cardiol. 1998 Apr;30(4):819–827. doi: 10.1006/jmcc.1998.0647. [DOI] [PubMed] [Google Scholar]
- Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee T. J., Sarwinski S., Ishine T., Lai C. C., Chen F. Y. Inhibition of cerebral neurogenic vasodilation by L-glutamine and nitric oxide synthase inhibitors and its reversal by L-citrulline. J Pharmacol Exp Ther. 1996 Feb;276(2):353–358. [PubMed] [Google Scholar]
- Li H., Meininger C. J., Wu G. Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 2000 Sep 15;746(2):199–207. doi: 10.1016/s0378-4347(00)00328-5. [DOI] [PubMed] [Google Scholar]
- Liu P., Hock C. E., Nagele R., Wong P. Y. Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol. 1997 May;272(5 Pt 2):H2327–H2336. doi: 10.1152/ajpheart.1997.272.5.H2327. [DOI] [PubMed] [Google Scholar]
- Marshall S., Bacote V., Traxinger R. R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem. 1991 Mar 15;266(8):4706–4712. [PubMed] [Google Scholar]
- McClain D. A., Paterson A. J., Roos M. D., Wei X., Kudlow J. E. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8150–8154. doi: 10.1073/pnas.89.17.8150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meininger C. J., Marinos R. S., Hatakeyama K., Martinez-Zaguilan R., Rojas J. D., Kelly K. A., Wu G. Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J. 2000 Jul 1;349(Pt 1):353–356. doi: 10.1042/0264-6021:3490353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meininger C. J., Wu G. L-glutamine inhibits nitric oxide synthesis in bovine venular endothelial cells. J Pharmacol Exp Ther. 1997 Apr;281(1):448–453. [PubMed] [Google Scholar]
- Meyer J. W., Schmitt M. E. A central role for the endothelial NADPH oxidase in atherosclerosis. FEBS Lett. 2000 Apr 21;472(1):1–4. doi: 10.1016/s0014-5793(00)01397-1. [DOI] [PubMed] [Google Scholar]
- Misko T. P., Schilling R. J., Salvemini D., Moore W. M., Currie M. G. A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem. 1993 Oct;214(1):11–16. doi: 10.1006/abio.1993.1449. [DOI] [PubMed] [Google Scholar]
- Mitchell J. A., Gray P., Anning P. D., Woods M., Warner T. D., Evans T. W. Effects of nitric oxide-modulating amino acids on coronary vessels: relevance to sepsis. Eur J Pharmacol. 2000 Feb 18;389(2-3):209–215. doi: 10.1016/s0014-2999(99)00837-7. [DOI] [PubMed] [Google Scholar]
- Nakhooda A. F., Like A. A., Chappel C. I., Murray F. T., Marliss E. B. The spontaneously diabetic Wistar rat. Metabolic and morphologic studies. Diabetes. 1977 Feb;26(2):100–112. doi: 10.2337/diab.26.2.100. [DOI] [PubMed] [Google Scholar]
- Nerlich A. G., Sauer U., Kolm-Litty V., Wagner E., Koch M., Schleicher E. D. Expression of glutamine:fructose-6-phosphate amidotransferase in human tissues: evidence for high variability and distinct regulation in diabetes. Diabetes. 1998 Feb;47(2):170–178. doi: 10.2337/diab.47.2.170. [DOI] [PubMed] [Google Scholar]
- Richards T. C., Greengard O. Distribution of glutamine hexosephosphate aminotransferase in rat tissues; changes with state of differentiation. Biochim Biophys Acta. 1973 May 28;304(3):842–850. doi: 10.1016/0304-4165(73)90231-6. [DOI] [PubMed] [Google Scholar]
- Robinson K. A., Weinstein M. L., Lindenmayer G. E., Buse M. G. Effects of diabetes and hyperglycemia on the hexosamine synthesis pathway in rat muscle and liver. Diabetes. 1995 Dec;44(12):1438–1446. doi: 10.2337/diab.44.12.1438. [DOI] [PubMed] [Google Scholar]
- Rossetti L., Hawkins M., Chen W., Gindi J., Barzilai N. In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats. J Clin Invest. 1995 Jul;96(1):132–140. doi: 10.1172/JCI118013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sessa W. C., Hecker M., Mitchell J. A., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8607–8611. doi: 10.1073/pnas.87.21.8607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stocchi V., Cucchiarini L., Canestrari F., Piacentini M. P., Fornaini G. A very fast ion-pair reversed-phase HPLC method for the separation of the most significant nucleotides and their degradation products in human red blood cells. Anal Biochem. 1987 Nov 15;167(1):181–190. doi: 10.1016/0003-2697(87)90150-3. [DOI] [PubMed] [Google Scholar]
- Swierkosz T. A., Mitchell J. A., Sessa W. C., Hecker M., Vane J. R. L-glutamine inhibits the release of endothelium-derived relaxing factor from the rabbit aorta. Biochem Biophys Res Commun. 1990 Oct 15;172(1):143–148. doi: 10.1016/s0006-291x(05)80184-6. [DOI] [PubMed] [Google Scholar]
- Weckbecker G., Keppler D. O. Separation and analysis of 4'-epimeric UDP-sugars by borate high-performance liquid chromatography. Anal Biochem. 1983 Jul 15;132(2):405–412. doi: 10.1016/0003-2697(83)90027-1. [DOI] [PubMed] [Google Scholar]
- Wu G. An important role for pentose cycle in the synthesis of citrulline and proline from glutamine in porcine enterocytes. Arch Biochem Biophys. 1996 Dec 15;336(2):224–230. doi: 10.1006/abbi.1996.0552. [DOI] [PubMed] [Google Scholar]
- Wu G., Haynes T. E., Li H., Meininger C. J. Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comp Biochem Physiol A Mol Integr Physiol. 2000 May;126(1):115–123. doi: 10.1016/s1095-6433(00)00196-3. [DOI] [PubMed] [Google Scholar]
- Wu G., Knabe D. A., Flynn N. E. Synthesis of citrulline from glutamine in pig enterocytes. Biochem J. 1994 Apr 1;299(Pt 1):115–121. doi: 10.1042/bj2990115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu G., Majumdar S., Zhang J., Lee H., Meininger C. J. Insulin stimulates glycolysis and pentose cycle activity in bovine microvascular endothelial cells. Comp Biochem Physiol Pharmacol Toxicol Endocrinol. 1994 Jul;108(2):179–185. doi: 10.1016/1367-8280(94)90029-9. [DOI] [PubMed] [Google Scholar]
- Wu G., Meininger C. J. Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat. Am J Physiol. 1995 Oct;269(4 Pt 2):H1312–H1318. doi: 10.1152/ajpheart.1995.269.4.H1312. [DOI] [PubMed] [Google Scholar]
- Wu G., Meininger C. J. Regulation of L-arginine synthesis from L-citrulline by L-glutamine in endothelial cells. Am J Physiol. 1993 Dec;265(6 Pt 2):H1965–H1971. doi: 10.1152/ajpheart.1993.265.6.H1965. [DOI] [PubMed] [Google Scholar]
- Wu G., Morris S. M., Jr Arginine metabolism: nitric oxide and beyond. Biochem J. 1998 Nov 15;336(Pt 1):1–17. doi: 10.1042/bj3360001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yki-Järvinen H., Daniels M. C., Virkamäki A., Mäkimattila S., DeFronzo R. A., McClain D. Increased glutamine:fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM. Diabetes. 1996 Mar;45(3):302–307. doi: 10.2337/diab.45.3.302. [DOI] [PubMed] [Google Scholar]
- Zalkin H., Smith J. L. Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol. 1998;72:87–144. doi: 10.1002/9780470123188.ch4. [DOI] [PubMed] [Google Scholar]
- Ziche M., Zawieja D., Hester R. K., Granger H. Calcium entry, mobilization, and extrusion in postcapillary venular endothelium exposed to bradykinin. Am J Physiol. 1993 Aug;265(2 Pt 2):H569–H580. doi: 10.1152/ajpheart.1993.265.2.H569. [DOI] [PubMed] [Google Scholar]