Abstract
The transcriptional activity of peroxisome proliferator-activated receptors (PPARs), and of nuclear hormone receptors in general, is subject to modulation by cofactors. However, most currently known co-activating proteins interact in a ligand-dependent manner with the C-terminal ligand-regulated activation function (AF)-2 domain of nuclear receptors. Since PPARalpha exhibits a strong constitutive transactivating function contained within an N-terminal AF-1 region, it can be speculated that a different set of cofactors might interact with this region of PPARs. An affinity purification approach was used to identify the peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (bifunctional enzyme, BFE) as a protein which strongly and specifically interacted with the N-terminal 92 amino acids of PPARalpha. Protein-protein interaction assays with the cloned BFE confirmed this interaction, which could be mapped to amino acids 307-514 of the BFE and the N-terminal 70 amino acids of PPARalpha. Moreover, transient transfection experiments in hepatoma cells revealed a 2.2-fold increase in the basal and ligand-stimulated transcriptional activity of PPARalpha in the presence of BFE. This stimulatory effect is preferentially observed for the PPARalpha isoform and it is significantly stronger (4.8-fold) in non-hepatic cells, which presumably express lower levels of endogenous BFE. Hence, the BFE represents the first known cofactor capable of activating the AF-1 domain of PPAR without requiring additional regions of this receptor. These data are compatible with a model whereby the PPAR-regulated BFE is able to modulate its own expression through an enhancement of the activity of PPARalpha, representing a novel peroxisomal-nuclear feed-forward regulatory loop.
Full Text
The Full Text of this article is available as a PDF (227.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumgart E., Vanhooren J. C., Fransen M., Van Leuven F., Fahimi H. D., Van Veldhoven P. P., Mannaerts G. P. Molecular cloning and further characterization of rat peroxisomal trihydroxycoprostanoyl-CoA oxidase. Biochem J. 1996 Nov 15;320(Pt 1):115–121. doi: 10.1042/bj3200115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castillo G., Brun R. P., Rosenfield J. K., Hauser S., Park C. W., Troy A. E., Wright M. E., Spiegelman B. M. An adipogenic cofactor bound by the differentiation domain of PPARgamma. EMBO J. 1999 Jul 1;18(13):3676–3687. doi: 10.1093/emboj/18.13.3676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Courchesne P. L., Patterson S. D. Identification of proteins by matrix-assisted laser desorption/ionization mass spectrometry using peptide and fragment ion masses. Methods Mol Biol. 1999;112:487–511. doi: 10.1385/1-59259-584-7:487. [DOI] [PubMed] [Google Scholar]
- DiRenzo J., Söderstrom M., Kurokawa R., Ogliastro M. H., Ricote M., Ingrey S., Hörlein A., Rosenfeld M. G., Glass C. K. Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Mol Cell Biol. 1997 Apr;17(4):2166–2176. doi: 10.1128/mcb.17.4.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass C. K., Rosenfeld M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000 Jan 15;14(2):121–141. [PubMed] [Google Scholar]
- Gurnell M., Wentworth J. M., Agostini M., Adams M., Collingwood T. N., Provenzano C., Browne P. O., Rajanayagam O., Burris T. P., Schwabe J. W. A dominant-negative peroxisome proliferator-activated receptor gamma (PPARgamma) mutant is a constitutive repressor and inhibits PPARgamma-mediated adipogenesis. J Biol Chem. 2000 Feb 25;275(8):5754–5759. doi: 10.1074/jbc.275.8.5754. [DOI] [PubMed] [Google Scholar]
- Juge-Aubry C. E., Gorla-Bajszczak A., Pernin A., Lemberger T., Wahli W., Burger A. G., Meier C. A. Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat. J Biol Chem. 1995 Jul 28;270(30):18117–18122. doi: 10.1074/jbc.270.30.18117. [DOI] [PubMed] [Google Scholar]
- Juge-Aubry C. E., Hammar E., Siegrist-Kaiser C., Pernin A., Takeshita A., Chin W. W., Burger A. G., Meier C. A. Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain. J Biol Chem. 1999 Apr 9;274(15):10505–10510. doi: 10.1074/jbc.274.15.10505. [DOI] [PubMed] [Google Scholar]
- Juge-Aubry C., Pernin A., Favez T., Burger A. G., Wahli W., Meier C. A., Desvergne B. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5'-flanking region. J Biol Chem. 1997 Oct 3;272(40):25252–25259. doi: 10.1074/jbc.272.40.25252. [DOI] [PubMed] [Google Scholar]
- Meertens L. M., Miyata K. S., Cechetto J. D., Rachubinski R. A., Capone J. P. A mitochondrial ketogenic enzyme regulates its gene expression by association with the nuclear hormone receptor PPARalpha. EMBO J. 1998 Dec 1;17(23):6972–6978. doi: 10.1093/emboj/17.23.6972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meier-Heusler S. C., Zhu X., Juge-Aubry C., Pernin A., Burger A. G., Cheng S. Y., Meier C. A. Modulation of thyroid hormone action by mutant thyroid hormone receptors, c-erbA alpha 2 and peroxisome proliferator-activated receptor: evidence for different mechanisms of inhibition. Mol Cell Endocrinol. 1995 Jan;107(1):55–66. doi: 10.1016/0303-7207(94)03422-p. [DOI] [PubMed] [Google Scholar]
- Meier C. A., Dickstein B. M., Ashizawa K., McClaskey J. H., Muchmore P., Ransom S. C., Menke J. B., Hao E. H., Usala S. J., Bercu B. B. Variable transcriptional activity and ligand binding of mutant beta 1 3,5,3'-triiodothyronine receptors from four families with generalized resistance to thyroid hormone. Mol Endocrinol. 1992 Feb;6(2):248–258. doi: 10.1210/mend.6.2.1569968. [DOI] [PubMed] [Google Scholar]
- Nolte R. T., Wisely G. B., Westin S., Cobb J. E., Lambert M. H., Kurokawa R., Rosenfeld M. G., Willson T. M., Glass C. K., Milburn M. V. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature. 1998 Sep 10;395(6698):137–143. doi: 10.1038/25931. [DOI] [PubMed] [Google Scholar]
- Osumi T., Ishii N., Hijikata M., Kamijo K., Ozasa H., Furuta S., Miyazawa S., Kondo K., Inoue K., Kagamiyama H. Molecular cloning and nucleotide sequence of the cDNA for rat peroxisomal enoyl-CoA: hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme. J Biol Chem. 1985 Jul 25;260(15):8905–8910. [PubMed] [Google Scholar]
- Puigserver P., Wu Z., Park C. W., Graves R., Wright M., Spiegelman B. M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998 Mar 20;92(6):829–839. doi: 10.1016/s0092-8674(00)81410-5. [DOI] [PubMed] [Google Scholar]
- Robyr D., Wolffe A. P., Wahli W. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol Endocrinol. 2000 Mar;14(3):329–347. doi: 10.1210/mend.14.3.0411. [DOI] [PubMed] [Google Scholar]
- Siegrist-Kaiser C. A., Pauli V., Juge-Aubry C. E., Boss O., Pernin A., Chin W. W., Cusin I., Rohner-Jeanrenaud F., Burger A. G., Zapf J. Direct effects of leptin on brown and white adipose tissue. J Clin Invest. 1997 Dec 1;100(11):2858–2864. doi: 10.1172/JCI119834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R. C. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999 Jul 9;98(1):115–124. doi: 10.1016/S0092-8674(00)80611-X. [DOI] [PubMed] [Google Scholar]
- Xu J., Qiu Y., DeMayo F. J., Tsai S. Y., Tsai M. J., O'Malley B. W. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science. 1998 Mar 20;279(5358):1922–1925. doi: 10.1126/science.279.5358.1922. [DOI] [PubMed] [Google Scholar]
- Xu L., Glass C. K., Rosenfeld M. G. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev. 1999 Apr;9(2):140–147. doi: 10.1016/S0959-437X(99)80021-5. [DOI] [PubMed] [Google Scholar]
- Yates J. R., 3rd, Carmack E., Hays L., Link A. J., Eng J. K. Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. Methods Mol Biol. 1999;112:553–569. doi: 10.1385/1-59259-584-7:553. [DOI] [PubMed] [Google Scholar]
- Zhang B., Marcus S. L., Sajjadi F. G., Alvares K., Reddy J. K., Subramani S., Rachubinski R. A., Capone J. P. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7541–7545. doi: 10.1073/pnas.89.16.7541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Y., Qi C., Jia Y., Nye J. S., Rao M. S., Reddy J. K. Deletion of PBP/PPARBP, the gene for nuclear receptor coactivator peroxisome proliferator-activated receptor-binding protein, results in embryonic lethality. J Biol Chem. 2000 May 19;275(20):14779–14782. doi: 10.1074/jbc.C000121200. [DOI] [PubMed] [Google Scholar]