Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jan 15;353(Pt 2):259–266. doi: 10.1042/0264-6021:3530259

Catalytic and spectroscopic analysis of blue copper-containing nitrite reductase mutants altered in the environment of the type 2 copper centre: implications for substrate interaction.

M Prudêncio 1, R R Eady 1, G Sawers 1
PMCID: PMC1221567  PMID: 11139389

Abstract

The blue dissimilatory nitrite reductase (NiR) from Alcaligenes xylosoxidans is a trimer containing two types of Cu centre, three type 1 electron transfer centres and three type 2 centres. The latter have been implicated in the binding and reduction of nitrite. The Cu ion of the type 2 centre of the oxidized enzyme is ligated by three His residues, and additionally has a co-ordinated water molecule that is also hydrogen-bonded to the carboxyl of Asp(92) [Dodd, Van Beeumen, Eady and Hasnain (1998), J. Mol. Biol. 282, 369-382]. Two mutations of this residue have been made, one to a glutamic acid residue and a second to an asparagine residue; the effects of both mutations on the spectroscopic and catalytic properties of the enzyme have been analysed. EPR spectroscopy revealed that both mutants retained intact type 1 Cu centres with g( parallel)=2.12 (A( parallel)=0 mT) and g( perpendicular)=2.30 (A( perpendicular)=6.4 mT), which was consistent with their blue colour, but differed in their activities and in the spectroscopic properties of the type 2 centres. The D92E mutant had an altered geometry of its type 2 centre such that nitrite was no longer capable of binding to elicit changes in the EPR parameters of this centre. Accordingly, this mutation resulted in a form of NiR that had very low enzyme activity with the artificial electron donors reduced Methyl Viologen and sodium dithionite. As isolated, the EPR spectrum of the Asp(92)-->Asn (D92N) mutant showed no characteristic type 2 hyperfine lines. However, oxidation with iridium hexachloride partly restored a type 2 EPR signal, suggesting that type 2 copper is present in the enzyme but in a reduced, EPR-silent form. Like the Asp(92)-->Glu mutant, D92N had very low enzyme activities with either Methyl Viologen or dithionite. Remarkably, when the physiological electron donor reduced azurin I was used, both mutant proteins exhibited restoration of enzyme activity. The degree of restoration differed for the two mutants, with the D92N derivative exhibiting approx. 60% of the activity seen for the wild-type NiR. These findings suggest that on formation of an electron transfer complex with azurin, a conformational change in NiR occurs that returns the catalytic Cu centre to a functionally active state capable of binding and reducing nitrite.

Full Text

The Full Text of this article is available as a PDF (167.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham Z. H., Lowe D. J., Smith B. E. Purification and characterization of the dissimilatory nitrite reductase from Alcaligenes xylosoxidans subsp. xylosoxidans (N.C.I.M.B. 11015): evidence for the presence of both type 1 and type 2 copper centres. Biochem J. 1993 Oct 15;295(Pt 2):587–593. doi: 10.1042/bj2950587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abraham Z. H., Smith B. E., Howes B. D., Lowe D. J., Eady R. R. pH-dependence for binding a single nitrite ion to each type-2 copper centre in the copper-containing nitrite reductase of Alcaligenes xylosoxidans. Biochem J. 1997 Jun 1;324(Pt 2):511–516. doi: 10.1042/bj3240511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adman E. T., Godden J. W., Turley S. The structure of copper-nitrite reductase from Achromobacter cycloclastes at five pH values, with NO2- bound and with type II copper depleted. J Biol Chem. 1995 Nov 17;270(46):27458–27474. doi: 10.1074/jbc.270.46.27458. [DOI] [PubMed] [Google Scholar]
  4. Boulanger M. J., Kukimoto M., Nishiyama M., Horinouchi S., Murphy M. E. Catalytic roles for two water bridged residues (Asp-98 and His-255) in the active site of copper-containing nitrite reductase. J Biol Chem. 2000 Aug 4;275(31):23957–23964. doi: 10.1074/jbc.M001859200. [DOI] [PubMed] [Google Scholar]
  5. Dodd F. E., Hasnain S. S., Abraham Z. H., Eady R. R., Smith B. E. Structures of a blue-copper nitrite reductase and its substrate-bound complex. Acta Crystallogr D Biol Crystallogr. 1997 Jul 1;53(Pt 4):406–418. doi: 10.1107/S0907444997002667. [DOI] [PubMed] [Google Scholar]
  6. Dodd F. E., Hasnain S. S., Hunter W. N., Abraham Z. H., Debenham M., Kanzler H., Eldridge M., Eady R. R., Ambler R. P., Smith B. E. Evidence for two distinct azurins in Alcaligenes xylosoxidans (NCIMB 11015): potential electron donors to nitrite reductase. Biochemistry. 1995 Aug 15;34(32):10180–10186. doi: 10.1021/bi00032a011. [DOI] [PubMed] [Google Scholar]
  7. Dodd F. E., Van Beeumen J., Eady R. R., Hasnain S. S. X-ray structure of a blue-copper nitrite reductase in two crystal forms. The nature of the copper sites, mode of substrate binding and recognition by redox partner. J Mol Biol. 1998 Sep 18;282(2):369–382. doi: 10.1006/jmbi.1998.2007. [DOI] [PubMed] [Google Scholar]
  8. Farver O., Eady R. R., Abraham Z. H., Pecht I. The intramolecular electron transfer between copper sites of nitrite reductase: a comparison with ascorbate oxidase. FEBS Lett. 1998 Oct 2;436(2):239–242. doi: 10.1016/s0014-5793(98)01120-x. [DOI] [PubMed] [Google Scholar]
  9. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science. 1991 Jul 26;253(5018):438–442. doi: 10.1126/science.1862344. [DOI] [PubMed] [Google Scholar]
  10. Gray K. A., Davidson V. L., Knaff D. B. Complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. J Biol Chem. 1988 Oct 5;263(28):13987–13990. [PubMed] [Google Scholar]
  11. Howes B. D., Abraham Z. H., Lowe D. J., Brüser T., Eady R. R., Smith B. E. EPR and electron nuclear double resonance (ENDOR) studies show nitrite binding to the type 2 copper centers of the dissimilatory nitrite reductase of Alcaligenes xylosoxidans (NCIMB 11015). Biochemistry. 1994 Mar 22;33(11):3171–3177. doi: 10.1021/bi00177a005. [DOI] [PubMed] [Google Scholar]
  12. Inoue T., Gotowda M., Deligeer, Kataoka K., Yamaguchi K., Suzuki S., Watanabe H., Gohow M., Kai Y. Type 1 Cu structure of blue nitrite reductase from Alcaligenes xylosoxidans GIFU 1051 at 2.05 A resolution: comparison of blue and green nitrite reductases. J Biochem. 1998 Nov;124(5):876–879. doi: 10.1093/oxfordjournals.jbchem.a022201. [DOI] [PubMed] [Google Scholar]
  13. Jackson M. A., Tiedje J. M., Averill B. A. Evidence for a NO-rebound mechanism for production of N2O from nitrite by the copper-containing nitrite reductase from Achromobacter cycloclastes. FEBS Lett. 1991 Oct 7;291(1):41–44. doi: 10.1016/0014-5793(91)81099-t. [DOI] [PubMed] [Google Scholar]
  14. Kakutani T., Watanabe H., Arima K., Beppu T. Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis strain S-6. J Biochem. 1981 Feb;89(2):453–461. doi: 10.1093/oxfordjournals.jbchem.a133220. [DOI] [PubMed] [Google Scholar]
  15. Kataoka K., Furusawa H., Takagi K., Yamaguchi K., Suzuki S. Functional analysis of conserved aspartate and histidine residues located around the type 2 copper site of copper-containing nitrite reductase. J Biochem. 2000 Feb;127(2):345–350. doi: 10.1093/oxfordjournals.jbchem.a022613. [DOI] [PubMed] [Google Scholar]
  16. Kukimoto M., Nishiyama M., Murphy M. E., Turley S., Adman E. T., Horinouchi S., Beppu T. X-ray structure and site-directed mutagenesis of a nitrite reductase from Alcaligenes faecalis S-6: roles of two copper atoms in nitrite reduction. Biochemistry. 1994 May 3;33(17):5246–5252. doi: 10.1021/bi00183a030. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Libby E., Averill B. A. Evidence that the type 2 copper centers are the site of nitrite reduction by Achromobacter cycloclastes nitrite reductase. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1529–1535. doi: 10.1016/0006-291x(92)90476-2. [DOI] [PubMed] [Google Scholar]
  20. Liu M. Y., Liu M. C., Payne W. J., Legall J. Properties and electron transfer specificity of copper proteins from the denitrifier "Achromobacter cycloclastes". J Bacteriol. 1986 May;166(2):604–608. doi: 10.1128/jb.166.2.604-608.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacGregor C. H. Isolation and characterization of nitrate reductase from Escherichia coli. Methods Enzymol. 1978;53:347–355. doi: 10.1016/s0076-6879(78)53040-1. [DOI] [PubMed] [Google Scholar]
  22. Murphy M. E., Turley S., Adman E. T. Structure of nitrite bound to copper-containing nitrite reductase from Alcaligenes faecalis. Mechanistic implications. J Biol Chem. 1997 Nov 7;272(45):28455–28460. doi: 10.1074/jbc.272.45.28455. [DOI] [PubMed] [Google Scholar]
  23. Murphy M. E., Turley S., Kukimoto M., Nishiyama M., Horinouchi S., Sasaki H., Tanokura M., Adman E. T. Structure of Alcaligenes faecalis nitrite reductase and a copper site mutant, M150E, that contains zinc. Biochemistry. 1995 Sep 26;34(38):12107–12117. doi: 10.1021/bi00038a003. [DOI] [PubMed] [Google Scholar]
  24. Olesen K., Veselov A., Zhao Y., Wang Y., Danner B., Scholes C. P., Shapleigh J. P. Spectroscopic, kinetic, and electrochemical characterization of heterologously expressed wild-type and mutant forms of copper-containing nitrite reductase from Rhodobacter sphaeroides 2.4.3. Biochemistry. 1998 Apr 28;37(17):6086–6094. doi: 10.1021/bi971603z. [DOI] [PubMed] [Google Scholar]
  25. Prudêncio M., Eady R. R., Sawers G. The blue copper-containing nitrite reductase from Alcaligenes xylosoxidans: cloning of the nirA gene and characterization of the recombinant enzyme. J Bacteriol. 1999 Apr;181(8):2323–2329. doi: 10.1128/jb.181.8.2323-2329.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strange R. W., Murphy L. M., Dodd F. E., Abraham Z. H., Eady R. R., Smith B. E., Hasnain S. S. Structural and kinetic evidence for an ordered mechanism of copper nitrite reductase. J Mol Biol. 1999 Apr 16;287(5):1001–1009. doi: 10.1006/jmbi.1999.2648. [DOI] [PubMed] [Google Scholar]
  28. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  29. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  30. Zumft W. G. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev. 1997 Dec;61(4):533–616. doi: 10.1128/mmbr.61.4.533-616.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zumft W. G., Gotzmann D. J., Kroneck P. M. Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens. Eur J Biochem. 1987 Oct 15;168(2):301–307. doi: 10.1111/j.1432-1033.1987.tb13421.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES