Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jan 15;353(Pt 2):291–297. doi: 10.1042/0264-6021:3530291

gamma-Interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation.

S Bose 1, P Brooks 1, G G Mason 1, A J Rivett 1
PMCID: PMC1221571  PMID: 11139393

Abstract

In mammalian cells proteasomes can be activated by two different types of regulatory complexes which bind to the ends of the proteasome cylinder. Addition of two 19 S (PA700; ATPase) complexes forms the 26 S proteasome, which is responsible for ATP-dependent non-lysosomal degradation of intracellular proteins, whereas 11 S complexes (PA28; REG) have been implicated in antigen processing. The PA28 complex is upregulated in response to gamma-interferon (gamma-IFN) as are three non-essential subunits of the 20 S proteasome. In the present study we have investigated the effects of gamma-IFN on the level of different proteasome complexes and on the phosphorylation of proteasome subunits. After treatment of cells with gamma-IFN, the level of 26 S proteasomes decreased and there was a concomitant increase in PA28-proteasome complexes. However, no free 19 S regulatory complexes were detected. The majority of the gamma-IFN-inducible proteasome subunits LMP2 and LMP7 were present in PA28-proteasome complexes, but these subunits were also found in 26 S proteasomes. The level of phosphorylation of both 20 S and 26 S proteasome subunits was found to decrease after gamma-IFN treatment of cells. The C8 alpha subunit showed more than a 50% decrease in phosphorylation, and the phosphorylation of C9 was only barely detectable after gamma-IFN treatment. These results suggest that association of regulatory components to 20 S proteasomes is regulated, and that phosphorylation of proteasome alpha subunits may be one mode of regulation.

Full Text

The Full Text of this article is available as a PDF (189.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumeister W., Walz J., Zühl F., Seemüller E. The proteasome: paradigm of a self-compartmentalizing protease. Cell. 1998 Feb 6;92(3):367–380. doi: 10.1016/s0092-8674(00)80929-0. [DOI] [PubMed] [Google Scholar]
  2. Boehm U., Klamp T., Groot M., Howard J. C. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749–795. doi: 10.1146/annurev.immunol.15.1.749. [DOI] [PubMed] [Google Scholar]
  3. Bose S., Mason G. G., Rivett A. J. Phosphorylation of proteasomes in mammalian cells. Mol Biol Rep. 1999 Apr;26(1-2):11–14. doi: 10.1023/a:1006969517958. [DOI] [PubMed] [Google Scholar]
  4. Brooks P., Fuertes G., Murray R. Z., Bose S., Knecht E., Rechsteiner M. C., Hendil K. B., Tanaka K., Dyson J., Rivett J. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J. 2000 Feb 15;346(Pt 1):155–161. [PMC free article] [PubMed] [Google Scholar]
  5. Castaño J. G., Mahillo E., Arizti P., Arribas J. Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis. Biochemistry. 1996 Mar 26;35(12):3782–3789. doi: 10.1021/bi952540s. [DOI] [PubMed] [Google Scholar]
  6. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 1998 Dec 15;17(24):7151–7160. doi: 10.1093/emboj/17.24.7151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeMartino G. N., Slaughter C. A. The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem. 1999 Aug 6;274(32):22123–22126. doi: 10.1074/jbc.274.32.22123. [DOI] [PubMed] [Google Scholar]
  8. Driscoll J., Brown M. G., Finley D., Monaco J. J. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature. 1993 Sep 16;365(6443):262–264. doi: 10.1038/365262a0. [DOI] [PubMed] [Google Scholar]
  9. Eleuteri A. M., Kohanski R. A., Cardozo C., Orlowski M. Bovine spleen multicatalytic proteinase complex (proteasome). Replacement of X, Y, and Z subunits by LMP7, LMP2, and MECL1 and changes in properties and specificity. J Biol Chem. 1997 May 2;272(18):11824–11831. doi: 10.1074/jbc.272.18.11824. [DOI] [PubMed] [Google Scholar]
  10. Fehling H. J., Swat W., Laplace C., Kühn R., Rajewsky K., Müller U., von Boehmer H. MHC class I expression in mice lacking the proteasome subunit LMP-7. Science. 1994 Aug 26;265(5176):1234–1237. doi: 10.1126/science.8066463. [DOI] [PubMed] [Google Scholar]
  11. Gaczynska M., Rock K. L., Goldberg A. L. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature. 1993 Sep 16;365(6443):264–267. doi: 10.1038/365264a0. [DOI] [PubMed] [Google Scholar]
  12. Groettrup M., Soza A., Eggers M., Kuehn L., Dick T. P., Schild H., Rammensee H. G., Koszinowski U. H., Kloetzel P. M. A role for the proteasome regulator PA28alpha in antigen presentation. Nature. 1996 May 9;381(6578):166–168. doi: 10.1038/381166a0. [DOI] [PubMed] [Google Scholar]
  13. Hendil K. B., Khan S., Tanaka K. Simultaneous binding of PA28 and PA700 activators to 20 S proteasomes. Biochem J. 1998 Jun 15;332(Pt 3):749–754. doi: 10.1042/bj3320749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hershko A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol. 1997 Dec;9(6):788–799. doi: 10.1016/s0955-0674(97)80079-8. [DOI] [PubMed] [Google Scholar]
  15. Kristensen P., Johnsen A. H., Uerkvitz W., Tanaka K., Hendil K. B. Human proteasome subunits from 2-dimensional gels identified by partial sequencing. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1785–1789. doi: 10.1006/bbrc.1994.2876. [DOI] [PubMed] [Google Scholar]
  16. Kuehn L., Dahlmann B. Reconstitution of proteasome activator PA28 from isolated subunits: optimal activity is associated with an alpha,beta-heteromultimer. FEBS Lett. 1996 Sep 30;394(2):183–186. doi: 10.1016/0014-5793(96)00946-5. [DOI] [PubMed] [Google Scholar]
  17. Ludemann R., Lerea K. M., Etlinger J. D. Copurification of casein kinase II with 20 S proteasomes and phosphorylation of a 30-kDa proteasome subunit. J Biol Chem. 1993 Aug 15;268(23):17413–17417. [PubMed] [Google Scholar]
  18. Mason G. G., Hendil K. B., Rivett A. J. Phosphorylation of proteasomes in mammalian cells. Identification of two phosphorylated subunits and the effect of phosphorylation on activity. Eur J Biochem. 1996 Jun 1;238(2):453–462. doi: 10.1111/j.1432-1033.1996.0453z.x. [DOI] [PubMed] [Google Scholar]
  19. Mason G. G., Murray R. Z., Pappin D., Rivett A. J. Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett. 1998 Jul 3;430(3):269–274. doi: 10.1016/s0014-5793(98)00676-0. [DOI] [PubMed] [Google Scholar]
  20. Preckel T., Fung-Leung W. P., Cai Z., Vitiello A., Salter-Cid L., Winqvist O., Wolfe T. G., Von Herrath M., Angulo A., Ghazal P. Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science. 1999 Dec 10;286(5447):2162–2165. doi: 10.1126/science.286.5447.2162. [DOI] [PubMed] [Google Scholar]
  21. Rechsteiner M., Realini C., Ustrell V. The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochem J. 2000 Jan 1;345(Pt 1):1–15. [PMC free article] [PubMed] [Google Scholar]
  22. Reidlinger J., Pike A. M., Savory P. J., Murray R. Z., Rivett A. J. Catalytic properties of 26 S and 20 S proteasomes and radiolabeling of MB1, LMP7, and C7 subunits associated with trypsin-like and chymotrypsin-like activities. J Biol Chem. 1997 Oct 3;272(40):24899–24905. doi: 10.1074/jbc.272.40.24899. [DOI] [PubMed] [Google Scholar]
  23. Rivett A. J., Savory P. J., Djaballah H. Multicatalytic endopeptidase complex: proteasome. Methods Enzymol. 1994;244:331–350. doi: 10.1016/0076-6879(94)44026-3. [DOI] [PubMed] [Google Scholar]
  24. Rock K. L., Goldberg A. L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol. 1999;17:739–779. doi: 10.1146/annurev.immunol.17.1.739. [DOI] [PubMed] [Google Scholar]
  25. Sibille C., Gould K. G., Willard-Gallo K., Thomson S., Rivett A. J., Powis S., Butcher G. W., De Baetselier P. LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes. Curr Biol. 1995 Aug 1;5(8):923–930. doi: 10.1016/s0960-9822(95)00182-5. [DOI] [PubMed] [Google Scholar]
  26. Stohwasser R., Kuckelkorn U., Kraft R., Kostka S., Kloetzel P. M. 20S proteasome from LMP7 knock out mice reveals altered proteolytic activities and cleavage site preferences. FEBS Lett. 1996 Mar 25;383(1-2):109–113. doi: 10.1016/0014-5793(96)00110-x. [DOI] [PubMed] [Google Scholar]
  27. Tanahashi N., Murakami Y., Minami Y., Shimbara N., Hendil K. B., Tanaka K. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem. 2000 May 12;275(19):14336–14345. doi: 10.1074/jbc.275.19.14336. [DOI] [PubMed] [Google Scholar]
  28. Tanahashi N., Yokota K., Ahn J. Y., Chung C. H., Fujiwara T., Takahashi E., DeMartino G. N., Slaughter C. A., Toyonaga T., Yamamura K. Molecular properties of the proteasome activator PA28 family proteins and gamma-interferon regulation. Genes Cells. 1997 Mar;2(3):195–211. doi: 10.1046/j.1365-2443.1997.d01-308.x. [DOI] [PubMed] [Google Scholar]
  29. Tanaka K., Tanahashi N., Tsurumi C., Yokota K. Y., Shimbara N. Proteasomes and antigen processing. Adv Immunol. 1997;64:1–38. doi: 10.1016/s0065-2776(08)60885-8. [DOI] [PubMed] [Google Scholar]
  30. Yang Y., Früh K., Ahn K., Peterson P. A. In vivo assembly of the proteasomal complexes, implications for antigen processing. J Biol Chem. 1995 Nov 17;270(46):27687–27694. doi: 10.1074/jbc.270.46.27687. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES