Abstract
Jurkat T cells showed a major, early decrease in blue autofluorescence in response to Fas/Apo-1/CD95 cross-linking or stimulation with cell-permeant ceramide. This indicates the oxidation/depletion of NADH or NADPH before the onset of apoptosis. Kinetic studies, cytofluorimetric multiparameter analyses and cell sorting experiments indicated a close temporal relationship between NAD(P)H oxidation/depletion and the dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)). In contrast, NAD(P)H depletion was detected well before several other changes associated with late apoptosis, including enhanced superoxide generation, phosphatidylserine exposure on the cell surface, loss of cytosolic K(+), decreased cytoplasmic pH, nuclear DNA fragmentation, cell shrinkage, loss of viability and the appearance of the mitochondrial antigen APO2.7. Full activation of caspase 9 and caspase 3 appeared to be correlated with the appearance of superoxide anions in the mitochondria, and followed the drop in NADPH. Overexpression of the apoptosis-inhibitory proto-oncogene Bcl-2, which encodes an inhibitor of the mitochondrial permeability transition (PT) pore, delayed both the DeltaPsi(m) disruption and the depletion of NAD(P)H. Similar effects were observed with the pharmacological PT pore inhibitors, bongkrekic acid and cyclosporin A. Thus there appears to be a close functional relationship between mitochondrial and cellular redox changes during early apoptosis; events that are inhibited by Bcl-2.
Full Text
The Full Text of this article is available as a PDF (429.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beutner G., Rück A., Riede B., Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta. 1998 Jan 5;1368(1):7–18. doi: 10.1016/s0005-2736(97)00175-2. [DOI] [PubMed] [Google Scholar]
- Brambilla L., Sestili P., Guidarelli A., Palomba L., Cantoni O. Electron transport-mediated wasteful consumption of NADH promotes the lethal response of U937 cells to tert-butylhydroperoxide. J Pharmacol Exp Ther. 1998 Mar;284(3):1112–1121. [PubMed] [Google Scholar]
- Cai J., Jones D. P. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem. 1998 May 8;273(19):11401–11404. doi: 10.1074/jbc.273.19.11401. [DOI] [PubMed] [Google Scholar]
- Castedo M., Hirsch T., Susin S. A., Zamzami N., Marchetti P., Macho A., Kroemer G. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol. 1996 Jul 15;157(2):512–521. [PubMed] [Google Scholar]
- Castedo M., Macho A., Zamzami N., Hirsch T., Marchetti P., Uriel J., Kroemer G. Mitochondrial perturbations define lymphocytes undergoing apoptotic depletion in vivo. Eur J Immunol. 1995 Dec;25(12):3277–3284. doi: 10.1002/eji.1830251212. [DOI] [PubMed] [Google Scholar]
- Connern C. P., Halestrap A. P. Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J. 1994 Sep 1;302(Pt 2):321–324. doi: 10.1042/bj3020321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costantini P., Chernyak B. V., Petronilli V., Bernardi P. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem. 1996 Mar 22;271(12):6746–6751. doi: 10.1074/jbc.271.12.6746. [DOI] [PubMed] [Google Scholar]
- Costantini P., Chernyak B. V., Petronilli V., Bernardi P. Selective inhibition of the mitochondrial permeability transition pore at the oxidation-reduction sensitive dithiol by monobromobimane. FEBS Lett. 1995 Apr 3;362(2):239–242. doi: 10.1016/0014-5793(95)00256-9. [DOI] [PubMed] [Google Scholar]
- Dallaporta B., Hirsch T., Susin S. A., Zamzami N., Larochette N., Brenner C., Marzo I., Kroemer G. Potassium leakage during the apoptotic degradation phase. J Immunol. 1998 Jun 1;160(11):5605–5615. [PubMed] [Google Scholar]
- Dellinger M., Geze M., Santus R., Kohen E., Kohen C., Hirschberg J. G., Monti M. Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level. Biotechnol Appl Biochem. 1998 Aug;28(Pt 1):25–32. [PubMed] [Google Scholar]
- Gellerich F. N., Schlame M., Bohnensack R., Kunz W. Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta. 1987 Feb 11;890(2):117–126. doi: 10.1016/0005-2728(87)90012-0. [DOI] [PubMed] [Google Scholar]
- Green D. R. Apoptotic pathways: the roads to ruin. Cell. 1998 Sep 18;94(6):695–698. doi: 10.1016/s0092-8674(00)81728-6. [DOI] [PubMed] [Google Scholar]
- Green D. R., Reed J. C. Mitochondria and apoptosis. Science. 1998 Aug 28;281(5381):1309–1312. doi: 10.1126/science.281.5381.1309. [DOI] [PubMed] [Google Scholar]
- Hoffschir F., Daya-Grosjean L., Petit P. X., Nocentini S., Dutrillaux B., Sarasin A., Vuillaume M. Low catalase activity in xeroderma pigmentosum fibroblasts and SV40-transformed human cell lines is directly related to decreased intracellular levels of the cofactor, NADPH. Free Radic Biol Med. 1998 Mar 15;24(5):809–816. doi: 10.1016/s0891-5849(97)00350-x. [DOI] [PubMed] [Google Scholar]
- Inai Y., Yabuki M., Kanno T., Akiyama J., Yasuda T., Utsumi K. Valinomycin induces apoptosis of ascites hepatoma cells (AH-130) in relation to mitochondrial membrane potential. Cell Struct Funct. 1997 Oct;22(5):555–563. doi: 10.1247/csf.22.555. [DOI] [PubMed] [Google Scholar]
- Kasner S. E., Ganz M. B. Regulation of intracellular potassium in mesangial cells: a fluorescence analysis using the dye, PBFI. Am J Physiol. 1992 Mar;262(3 Pt 2):F462–F467. doi: 10.1152/ajprenal.1992.262.3.F462. [DOI] [PubMed] [Google Scholar]
- Kataoka A., Kubota M., Watanabe K., Sawada M., Koishi S., Lin Y. W., Usami I., Akiyama Y., Kitoh T., Furusho K. NADH dehydrogenase deficiency in an apoptosis-resistant mutant isolated from a human HL-60 leukemia cell line. Cancer Res. 1997 Dec 1;57(23):5243–5245. [PubMed] [Google Scholar]
- Kluck R. M., Bossy-Wetzel E., Green D. R., Newmeyer D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997 Feb 21;275(5303):1132–1136. doi: 10.1126/science.275.5303.1132. [DOI] [PubMed] [Google Scholar]
- Koester S. K., Roth P., Mikulka W. R., Schlossman S. F., Zhang C., Bolton W. E. Monitoring early cellular responses in apoptosis is aided by the mitochondrial membrane protein-specific monoclonal antibody APO2.7. Cytometry. 1997 Dec 1;29(4):306–312. [PubMed] [Google Scholar]
- Krippner A., Matsuno-Yagi A., Gottlieb R. A., Babior B. M. Loss of function of cytochrome c in Jurkat cells undergoing fas-mediated apoptosis. J Biol Chem. 1996 Aug 30;271(35):21629–21636. doi: 10.1074/jbc.271.35.21629. [DOI] [PubMed] [Google Scholar]
- Kroemer G., Petit P., Zamzami N., Vayssière J. L., Mignotte B. The biochemistry of programmed cell death. FASEB J. 1995 Oct;9(13):1277–1287. doi: 10.1096/fasebj.9.13.7557017. [DOI] [PubMed] [Google Scholar]
- Kühnel J. M., Perrot J. Y., Faussat A. M., Marie J. P., Schwaller M. A. Functional assay of multidrug resistant cells using JC-1, a carbocyanine fluorescent probe. Leukemia. 1997 Jul;11(7):1147–1155. doi: 10.1038/sj.leu.2400698. [DOI] [PubMed] [Google Scholar]
- Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
- Macho A., Hirsch T., Marzo I., Marchetti P., Dallaporta B., Susin S. A., Zamzami N., Kroemer G. Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol. 1997 May 15;158(10):4612–4619. [PubMed] [Google Scholar]
- Martinou J. C., Desagher S., Antonsson B. Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol. 2000 Mar;2(3):E41–E43. doi: 10.1038/35004069. [DOI] [PubMed] [Google Scholar]
- Marzo I., Brenner C., Zamzami N., Jürgensmeier J. M., Susin S. A., Vieira H. L., Prévost M. C., Xie Z., Matsuyama S., Reed J. C. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science. 1998 Sep 25;281(5385):2027–2031. doi: 10.1126/science.281.5385.2027. [DOI] [PubMed] [Google Scholar]
- Marzo I., Brenner C., Zamzami N., Susin S. A., Beutner G., Brdiczka D., Rémy R., Xie Z. H., Reed J. C., Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med. 1998 Apr 20;187(8):1261–1271. doi: 10.1084/jem.187.8.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuyama S., Llopis J., Deveraux Q. L., Tsien R. Y., Reed J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol. 2000 Jun;2(6):318–325. doi: 10.1038/35014006. [DOI] [PubMed] [Google Scholar]
- Mehendale H. M., Roth R. A., Gandolfi A. J., Klaunig J. E., Lemasters J. J., Curtis L. R. Novel mechanisms in chemically induced hepatotoxicity. FASEB J. 1994 Dec;8(15):1285–1295. doi: 10.1096/fasebj.8.15.8001741. [DOI] [PubMed] [Google Scholar]
- Meuwis K., Boens N., De Schryver F. C., Gallay J., Vincent M. Photophysics of the fluorescent K+ indicator PBFI. Biophys J. 1995 Jun;68(6):2469–2473. doi: 10.1016/S0006-3495(95)80428-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mignotte B., Vayssiere J. L. Mitochondria and apoptosis. Eur J Biochem. 1998 Feb 15;252(1):1–15. doi: 10.1046/j.1432-1327.1998.2520001.x. [DOI] [PubMed] [Google Scholar]
- Métivier D., Dallaporta B., Zamzami N., Larochette N., Susin S. A., Marzo I., Kroemer G. Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett. 1998 Apr;61(2-3):157–163. doi: 10.1016/s0165-2478(98)00013-3. [DOI] [PubMed] [Google Scholar]
- Narita M., Shimizu S., Ito T., Chittenden T., Lutz R. J., Matsuda H., Tsujimoto Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14681–14686. doi: 10.1073/pnas.95.25.14681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
- Nieminen A. L., Byrne A. M., Herman B., Lemasters J. J. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol. 1997 Apr;272(4 Pt 1):C1286–C1294. doi: 10.1152/ajpcell.1997.272.4.C1286. [DOI] [PubMed] [Google Scholar]
- Noack H., Kunz W. S., Augustin W. Evaluation of a procedure for the simultaneous determination of oxidized and reduced pyridine nucleotides and adenylates in organic phenol extracts from mitochondria. Anal Biochem. 1992 Apr;202(1):162–165. doi: 10.1016/0003-2697(92)90222-s. [DOI] [PubMed] [Google Scholar]
- Petit P. X., Goubern M., Diolez P., Susin S. A., Zamzami N., Kroemer G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett. 1998 Apr 10;426(1):111–116. doi: 10.1016/s0014-5793(98)00318-4. [DOI] [PubMed] [Google Scholar]
- Petit P. X., Lecoeur H., Zorn E., Dauguet C., Mignotte B., Gougeon M. L. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol. 1995 Jul;130(1):157–167. doi: 10.1083/jcb.130.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petit P. X., Susin S. A., Zamzami N., Mignotte B., Kroemer G. Mitochondria and programmed cell death: back to the future. FEBS Lett. 1996 Oct 28;396(1):7–13. doi: 10.1016/0014-5793(96)00988-x. [DOI] [PubMed] [Google Scholar]
- Petronilli V., Costantini P., Scorrano L., Colonna R., Passamonti S., Bernardi P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem. 1994 Jun 17;269(24):16638–16642. [PubMed] [Google Scholar]
- Rothe G., Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2',7'-dichlorofluorescin. J Leukoc Biol. 1990 May;47(5):440–448. [PubMed] [Google Scholar]
- Rottenberg H., Wu S. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta. 1998 Sep 16;1404(3):393–404. doi: 10.1016/s0167-4889(98)00088-3. [DOI] [PubMed] [Google Scholar]
- Salvemini F., Franzé A., Iervolino A., Filosa S., Salzano S., Ursini M. V. Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J Biol Chem. 1999 Jan 29;274(5):2750–2757. doi: 10.1074/jbc.274.5.2750. [DOI] [PubMed] [Google Scholar]
- Seksek O., Henry-Toulmé N., Sureau F., Bolard J. SNARF-1 as an intracellular pH indicator in laser microspectrofluorometry: a critical assessment. Anal Biochem. 1991 Feb 15;193(1):49–54. doi: 10.1016/0003-2697(91)90042-r. [DOI] [PubMed] [Google Scholar]
- Shiino A., Matsuda M., Handa J., Chance B. Poor recovery of mitochondrial redox state in CA1 after transient forebrain ischemia in gerbils. Stroke. 1998 Nov;29(11):2421–2425. doi: 10.1161/01.str.29.11.2421. [DOI] [PubMed] [Google Scholar]
- Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441–446. doi: 10.1038/17135. [DOI] [PubMed] [Google Scholar]
- Susin S. A., Zamzami N., Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):151–165. doi: 10.1016/s0005-2728(98)00110-8. [DOI] [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Vander Heiden M. G., Chandel N. S., Williamson E. K., Schumacker P. T., Thompson C. B. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell. 1997 Nov 28;91(5):627–637. doi: 10.1016/s0092-8674(00)80450-x. [DOI] [PubMed] [Google Scholar]
- Vayssiere J. L., Petit P. X., Risler Y., Mignotte B. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11752–11756. doi: 10.1073/pnas.91.24.11752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams M. D., Van Remmen H., Conrad C. C., Huang T. T., Epstein C. J., Richardson A. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem. 1998 Oct 23;273(43):28510–28515. doi: 10.1074/jbc.273.43.28510. [DOI] [PubMed] [Google Scholar]
- Yang J., Liu X., Bhalla K., Kim C. N., Ibrado A. M., Cai J., Peng T. I., Jones D. P., Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997 Feb 21;275(5303):1129–1132. doi: 10.1126/science.275.5303.1129. [DOI] [PubMed] [Google Scholar]
- Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]