Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jan 15;353(Pt 2):403–409. doi: 10.1042/0264-6021:3530403

Characterization of monocot and dicot plant S-adenosyl-l-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames.

M Franceschetti 1, C Hanfrey 1, S Scaramagli 1, P Torrigiani 1, N Bagni 1, D Burtin 1, A J Michael 1
PMCID: PMC1221584  PMID: 11139406

Abstract

S-Adenosyl-L-methionine decarboxylase (AdoMetDC; EC 4.1.1.50) is one of the key regulatory enzymes in the biosynthesis of polyamines. Isolation of genomic and cDNA sequences from rice and Arabidopsis had indicated that this enzyme is encoded by a small multigene family in monocot and dicot plants. Analysis of rice, maize and Arabidopsis AdoMetDC cDNA species revealed that the monocot enzyme possesses an extended C-terminus relative to dicot and human enzymes. Interestingly, we discovered that all expressed plant AdoMetDC mRNA 5' leader sequences contain a highly conserved pair of overlapping upstream open reading frames (uORFs) that overlap by one base. The 5' tiny uORF consists of two or three codons and the 3' small uORF encodes 50-54 residues. Sequences of the small uORFs are highly conserved between monocot, dicot and gymnosperm AdoMetDC mRNA species and the C-terminus of the plant small uORFs is conserved with the C-terminus of nematode AdoMetDC uORFs; such a conserved arrangement is strongly suggestive of a translational regulatory mechanism. No introns were found in the main AdoMetDC proenzyme ORF from any of the plant genes encoding AdoMetDC, whereas introns were found in conserved positions flanking the overlapping uORFs. The absence of the furthest 3' intron from the Arabidopsis gene encoding AdoMetDC2 suggests that this intron was lost recently. Reverse-transcriptase-mediated PCR analysis of the two Arabidopsis genes for AdoMetDC indicated that AdoMetDC1 is abundant and ubiquitous, whereas the gene for AdoMetDC2 is expressed preferentially in leaves and inflorescences. Investigation of recently released Arabidopsis genome sequences has revealed that in addition to the two genes encoding AdoMetDC isolated as part of the present work, four additional genes are present in Arabidopsis but they are probably not expressed.

Full Text

The Full Text of this article is available as a PDF (419.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Da'Dara A. A., Henkle-Dührsen K., Walter R. D. A novel trans-spliced mRNA from Onchocerca volvulus encodes a functional S-adenosylmethionine decarboxylase. Biochem J. 1996 Dec 1;320(Pt 2):519–530. doi: 10.1042/bj3200519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Da'dara A. A., Walter R. D. Molecular and biochemical characterization of S-adenosylmethionine decarboxylase from the free-living nematode Caenorhabditis elegans. Biochem J. 1998 Dec 15;336(Pt 3):545–550. doi: 10.1042/bj3360545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dresselhaus T., Barcelo P., Hagel C., Lörz H., Humbeck K. Isolation and characterization of a Tritordeum cDNA encoding S-adenosylmethionine decarboxylase that is circadian-clock-regulated. Plant Mol Biol. 1996 Mar;30(5):1021–1033. doi: 10.1007/BF00020812. [DOI] [PubMed] [Google Scholar]
  5. Ekstrom J. L., Mathews I. I., Stanley B. A., Pegg A. E., Ealick S. E. The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 A resolution reveals a novel fold. Structure. 1999 May;7(5):583–595. doi: 10.1016/s0969-2126(99)80074-4. [DOI] [PubMed] [Google Scholar]
  6. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  7. Gu Z., Harrod R., Rogers E. J., Lovett P. S. Anti-peptidyl transferase leader peptides of attenuation-regulated chloramphenicol-resistance genes. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5612–5616. doi: 10.1073/pnas.91.12.5612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hill J. R., Morris D. R. Cell-specific translation of S-adenosylmethionine decarboxylase mRNA. Regulation by the 5' transcript leader. J Biol Chem. 1992 Oct 25;267(30):21886–21893. [PubMed] [Google Scholar]
  9. Hill J. R., Morris D. R. Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Dependence on translation and coding capacity of the cis-acting upstream open reading frame. J Biol Chem. 1993 Jan 5;268(1):726–731. [PubMed] [Google Scholar]
  10. Hutchison C. A., Peterson S. N., Gill S. R., Cline R. T., White O., Fraser C. M., Smith H. O., Venter J. C. Global transposon mutagenesis and a minimal Mycoplasma genome. Science. 1999 Dec 10;286(5447):2165–2169. doi: 10.1126/science.286.5447.2165. [DOI] [PubMed] [Google Scholar]
  11. Igarashi K., Kashiwagi K. Polyamine transport in bacteria and yeast. Biochem J. 1999 Dec 15;344(Pt 3):633–642. [PMC free article] [PubMed] [Google Scholar]
  12. Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol. 1987 Oct;7(10):3438–3445. doi: 10.1128/mcb.7.10.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  14. Larsson J., Rasmuson-Lestander A. Cloning, mapping and mutational analysis of the S-adenosylmethionine decarboxylase gene in Drosophila melanogaster. Mol Gen Genet. 1997 Nov;256(6):652–660. doi: 10.1007/s004380050613. [DOI] [PubMed] [Google Scholar]
  15. Lee M. M., Lee S. H., Park K. Y. Characterization and expression of two members of the S-adenosylmethionine decarboxylase gene family in carnation flower. Plant Mol Biol. 1997 Jun;34(3):371–382. doi: 10.1023/a:1005811229988. [DOI] [PubMed] [Google Scholar]
  16. Mad Arif S. A., Taylor M. A., George L. A., Butler A. R., Burch L. R., Davies H. V., Stark M. J., Kumar A. Characterisation of the S-adenosylmethionine decarboxylase (SAMDC) gene of potato. Plant Mol Biol. 1994 Oct;26(1):327–338. doi: 10.1007/BF00039543. [DOI] [PubMed] [Google Scholar]
  17. Marić S. C., Crozat A., Jänne O. A. Structure and organization of the human S-adenosylmethionine decarboxylase gene. J Biol Chem. 1992 Sep 15;267(26):18915–18923. [PubMed] [Google Scholar]
  18. Meissner R., Michael A. J. Isolation and characterisation of a diverse family of Arabidopsis two and three-fingered C2H2 zinc finger protein genes and cDNAs. Plant Mol Biol. 1997 Mar;33(4):615–624. doi: 10.1023/a:1005746803089. [DOI] [PubMed] [Google Scholar]
  19. Michael A. J., Hofer J. M., Ellis T. H. Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins. Plant Mol Biol. 1996 Mar;30(5):1051–1058. doi: 10.1007/BF00020815. [DOI] [PubMed] [Google Scholar]
  20. Mize G. J., Ruan H., Low J. J., Morris D. R. The inhibitory upstream open reading frame from mammalian S-adenosylmethionine decarboxylase mRNA has a strict sequence specificity in critical positions. J Biol Chem. 1998 Dec 4;273(49):32500–32505. doi: 10.1074/jbc.273.49.32500. [DOI] [PubMed] [Google Scholar]
  21. Nishimura K., Kashiwagi K., Matsuda Y., Jänne O. A., Igarashi K. Gene structure and chromosomal localization of mouse S-adenosylmethionine decarboxylase. Gene. 1999 Oct 1;238(2):343–350. doi: 10.1016/s0378-1119(99)00355-8. [DOI] [PubMed] [Google Scholar]
  22. Pulkka A., Ihalainen R., Suorsa A., Riviere M., Szpirer J., Pajunen A. Structures and chromosomal localizations of two rat genes encoding S-adenosylmethionine decarboxylase. Genomics. 1993 May;16(2):342–349. doi: 10.1006/geno.1993.1195. [DOI] [PubMed] [Google Scholar]
  23. Ruan H., Hill J. R., Fatemie-Nainie S., Morris D. R. Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Influence of the structure of the 5' transcript leader on regulation by the upstream open reading frame. J Biol Chem. 1994 Jul 8;269(27):17905–17910. [PubMed] [Google Scholar]
  24. Ruan H., Shantz L. M., Pegg A. E., Morris D. R. The upstream open reading frame of the mRNA encoding S-adenosylmethionine decarboxylase is a polyamine-responsive translational control element. J Biol Chem. 1996 Nov 22;271(47):29576–29582. doi: 10.1074/jbc.271.47.29576. [DOI] [PubMed] [Google Scholar]
  25. Schena M., Davis R. W. Structure of homeobox-leucine zipper genes suggests a model for the evolution of gene families. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8393–8397. doi: 10.1073/pnas.91.18.8393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shantz L. M., Holm I., Jänne O. A., Pegg A. E. Regulation of S-adenosylmethionine decarboxylase activity by alterations in the intracellular polyamine content. Biochem J. 1992 Dec 1;288(Pt 2):511–518. doi: 10.1042/bj2880511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shantz L. M., Viswanath R., Pegg A. E. Role of the 5'-untranslated region of mRNA in the synthesis of S-adenosylmethionine decarboxylase and its regulation by spermine. Biochem J. 1994 Sep 15;302(Pt 3):765–772. doi: 10.1042/bj3020765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stanley B. A., Shantz L. M., Pegg A. E. Expression of mammalian S-adenosylmethionine decarboxylase in Escherichia coli. Determination of sites for putrescine activation of activity and processing. J Biol Chem. 1994 Mar 18;269(11):7901–7907. [PubMed] [Google Scholar]
  29. Suzuki T., Kashiwagi K., Igarashi K. Polyamine regulation of S-adenosylmethionine decarboxylase synthesis through the 5'-untranslated region of its mRNA. Biochem Biophys Res Commun. 1993 Apr 30;192(2):627–634. doi: 10.1006/bbrc.1993.1461. [DOI] [PubMed] [Google Scholar]
  30. Xiong H., Stanley B. A., Tekwani B. L., Pegg A. E. Processing of mammalian and plant S-adenosylmethionine decarboxylase proenzymes. J Biol Chem. 1997 Nov 7;272(45):28342–28348. doi: 10.1074/jbc.272.45.28342. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES